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Abstract 

 
In this study, an explainable deep learning model combining EfficientNetB0 and a Prototype Layer 

(ProtoPNet) was developed for the classification of skin lesions. The model assigned two prototypes per 

class to learn specific class features and employed both Grad-CAM and a novel Most Similar Patch 

method to explain decision mechanisms following prediction. During Most Similar Patch analysis, 

LIME contour maps were generated for patches with high edge density, whereas color histograms were 

used for regions characterized predominantly by color and texture. The model’s ability to achieve both 

accurate classification and causal reasoning was evaluated, showing promising results in learning intra- 

class representations and providing meaningful explanations. Future work envisions extending this 

approach to more complex datasets such as histopathological images, enabling reliable interpretation of 

critical structures like tumor microenvironments. This hybrid framework is expected to contribute to the 

development of clinically trustworthy, explainable AI systems applicable to medical image analysis. 
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1. Introduction 

 

 

In recent years, deep learning (DL)-based artificial intelligence (AI) systems have achieved 

remarkable advancements in the field of medical image analysis, significantly improving both 

diagnostic accuracy and automation. Convolutional neural networks (CNNs) and transformer- 

based architectures are now widely used in clinical tasks such as dermatological lesion 

classification and histopathological tumor segmentation, often achieving accuracy exceeding 90% 

[1,2]. However, despite these impressive performances, such systems frequently operate as “black 

boxes,” offering little to no insight into the reasoning behind their decisions. In healthcare, where 

decisions must be not only accurate but also ethically and clinically defensible, explainability has 

become an essential requirement. Explainable Artificial Intelligence (XAI) addresses this issue by 

making the decision-making process of AI models transparent and interpretable [3]. Techniques 

such as Grad-CAM++, SHAP, and LIME have been used to provide visual or numerical 

justifications for model predictions. For instance, in skin cancer classification, Grad-CAM++ can 
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highlight pixel regions most influential in diagnosing melanoma, while SHAP can quantify the 

contribution of color and texture patterns to a specific output [4,5]. Similarly, in histopathology, 

post-segmentation saliency maps and Grad-CAM++ are employed to visualize which 

morphological regions in a tissue slide influenced the classification. 

 

Nonetheless, the majority of existing XAI studies are limited to surface-level visual explanations, 

falling short of providing causal, conceptual, or counterfactual reasoning. While methods like 

Grad-CAM++ indicate areas of attention, they do not determine whether these regions are causally 

responsible for the prediction. SHAP and LIME generate feature attribution scores, yet these often 

lack clinical interpretability or stability across repeated runs [6]. Furthermore, clinical studies have 

shown that such explanation maps are not always perceived as diagnostically relevant by 

physicians, particularly in low-grade tumor cases [7,8]. 

 

Notable studies further reveal these limitations. For instance, SmartSkin-XAI (2025) achieved high 

classification accuracy but provided only spatial attention without addressing why a particular 

region led to the decision [1]. Similarly, GRAPHITE (2025) introduced a graph-based attention 

model for breast cancer histology but lacked counterfactual analysis [2]. In NDG-CAM (2022), 

nucleus-level segmentation was effective, yet explanation maps focused solely on central regions, 

ignoring the diagnostic value of peripheral structures [4]. In hist2RNA (2023), a Transform-based 

model predicted gene expression from pathological images but failed to clarify the morphological 

basis of those predictions [5]. Even more concerning, explanation methods have been shown to 

produce inconsistent results across identical inputs, undermining trust in clinical settings [6]. These 

findings indicate that visual heatmaps or numerical feature scores are insufficient for clinical 

integration. XAI must evolve from isolated, post-hoc modules into systems embedded within the 

decision process, capable of causal, conceptual, and counterfactual explanations [9-11]. 

 

Motivated by these gaps, the present study proposes an explainable classification framework built 

upon ProtoPNet, a model designed to provide both visual and concept-based justifications [12,13]. 

ProtoPNet classifies inputs by comparing them to class-specific learned prototypes, enabling users 

to ask not only “What was predicted?” but also “Why this prediction?” Through this architecture, 

the study aims to evaluate the interpretability, clinical relevance, and conceptual alignment of 

ProtoPNet explanations in digital pathology, with a particular focus on skin and breast cancer 

diagnosis tasks [12]. 

 

 

 

2. Materials and Method 

 

 

In this study, the publicly available ISIC 2018 dataset was utilized to perform both multi-class skin 

lesion classification and semantic segmentation [14]. The dataset includes a total of 9 diagnostic 

categories, each representing a distinct type of skin lesion with clinical relevance: Melanoma 

(MEL), Melanocytic Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis / Intraepithelial 

Carcinoma (AKIEC), Pigmented Benign Keratosis (BKL), Dermatofibroma (DF), Vascular Lesion 

(VASC), Squamous Cell Carcinoma (SCC), Seborrheic Keratosis (SK). As the class distribution 
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within the dataset was significantly imbalanced, a comprehensive data augmentation strategy was 

implemented to ensure that each class consisted of approximately 4500 images. Each original 

image was artificially augmented multiple times for underrepresented classes to achieve the target 

volume. For instance, seborrheic keratosis (SK) originally had 77 images, each of which was 

augmented 59 times; squamous cell carcinoma (SCC) images were augmented 25 times, basal cell 

carcinoma (BCC) 12 times, nevus (NV) 13 times, pigmented benign keratosis (BKL) 10 times, 

melanoma (MEL) 11 times, dermatofibroma (DF) 48 times, vascular lesion (VASC) 33 times, and 

actinic keratosis (AKIEC) 40 times. Augmentation techniques included horizontal and vertical 

flipping, random rotation, cropping, zoom, color jitter, and elastic deformation. These 

transformations ensured structural consistency while improving the model's generalizability, 

especially for rare lesion types. A prototype-based explainability mechanism was developed on top 

of an EfficientNetB0 backbone to enhance both the classification accuracy and interpretability of 

skin lesion diagnoses. Normalized 224×224 images were fed into the EfficientNetB0 model, where 

the first 150 layers were frozen to prevent overfitting during low-level feature extraction. A 1×1 

Conv2D layer with 128 filters was added to the output, creating compact feature maps that were 

directly connected to a Prototype Layer, thus preserving spatial information for prototype 

matching. The Prototype Layer computed Euclidean distances between input feature maps and 

learnable prototype vectors, outputting minimum distance activations. A subsequent Dense layer 

with 64 units was introduced to strengthen prototype-to-class associations, followed by a softmax 

output layer predicting 9 classes. Prototype vectors were initialized using two representative 

samples per class, selected from the test set, thereby enhancing interpretability. The model's 

performance was evaluated on the training and validation sets using accuracy and categorical cross- 

entropy loss metrics. During training, early stopping was applied to monitor improvements in 

validation accuracy. For XAI analysis, Grad-CAM was used to visualize the most influential 

regions for each test sample, prototype activation maps were extracted, and the "Most Similar 

Patch" was identified on each image [15]. Whether these regions were edge- or color-based was 

analyzed using LIME explanations and color histograms. The quality of explanations was 

quantitatively assessed using normalized heatmap intensity and prototype similarity scores. This 

integrated approach achieved both high classification accuracy and interpretable decision-making 

processes. 

 

 

2.1. Calculation 

 

In skin lesions, the balance of classes before XAI analysis is important; almost every class should 

give an equal number of samples, thus preventing class imbalance. Here, there was a serious 

imbalance in the data at the beginning within 9 classes, while the number of samples of some 

classes was 1800, some were as few as 300. For this reason, a threshold value (4500) was 

determined while augmenting the classes, so that almost the same number of samples were 

prepared for XAI for each class. Fig. 1.A shows the numbers of classes after balancing. After the 

training process, the accuracy and loss values of the model were used to measure reliability based 

on the literature. The model was created to stop automatically at the highest accuracy value, based 

on early stopping at 50 epochs. This process is visualized in Figure 1.B. 
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Figure 1.A Class balance after augmented data, and 1.B Accuracy and loss function of the training process. 

 

 

The model utilized feature maps extracted from the "block6a_expand_activation" layer, which 

were subsequently projected into a 128-dimensional feature space through a 1x1 Conv2D layer. To 

process these features, a custom-designed Prototype Layer containing two prototypes per class was 

introduced. The Prototype Layer calculated the Euclidean distances between the input features and 

the learned prototypes, routing the classification through the prototypes with minimum distances. 

Through this structure, the model was enabled to learn class-specific representative features. 

During training, extensive data augmentation techniques were applied, including random rotation, 

shifting, zooming, brightness adjustment, and horizontal/vertical flipping, to enhance the model’s 

generalization capability. The Adam optimization algorithm was employed, categorical cross- 

entropy was selected as the loss function, and accuracy was used as the evaluation metric. Early 

Stopping was applied to prevent overfitting, and Model Checkpoint was used to retain the best 

performing model. To enhance explainability, Grad-CAM, the most widely used method in 

literature, was integrated into the model. Grad-CAM was utilized to visualize the critical regions 

that contributed most to the model's predictions through heatmaps. However, relying solely on 

Grad-CAM was deemed insufficient. Therefore, an additional explanation strategy, specific to the 

model’s architecture, was introduced: Prototype Activation Maps. By extracting prototype-specific 

activation heatmaps, it became possible to directly visualize which regions activated particular 

prototypes most strongly, providing a more granular understanding of the model's behavior. 

 

Beyond these, an original method not commonly found in the literature, termed "Most Similar 

Patch," was incorporated into the analysis. In this approach, for each test image, the model 

identified the patch that bore the highest similarity to one of its assigned prototypes. The model 

thus explained the rationale behind its prediction by extracting features from the prototypes 

assigned within each class. If the selected patch exhibited prominent edge structures, such as 

contours or depth variations, LIME was applied to generate edge contour explanations over the 

1.B 

1.A 
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patch. Conversely, if the patch lacked significant edges but displayed characteristic color or texture 

distributions, a color histogram was generated to represent the explanation. 

 

This strategy allowed the model to autonomously adapt its explanatory approach based on the 

structural properties of each selected patch, generating class-specific, individualized explanations 

for each test instance. Consequently, a comprehensive explainability framework was established, 

integrating standard methods such as Grad-CAM alongside the novel Most Similar Patch 

mechanism, thus providing a deeper and more interpretable insight into the model’s internal 

decision-making processes. 

 

 

3. Results 

 

In order to test the operability and reliability of the model and to measure its decision-making 

accuracy, it was asked it to assign one random example of a random class from the entire test file 

and to perform the analysis of this example. The first sample called from the test file came from 

the vascular lesion class. The model correctly predicted this class and tried to explain the predicted 

result by creating a heat map with Grad-CAM and Prototype Net. It argued that the reason for this 

explanation and prediction was the color scale of the lesions belonging to this class. The model 

saw that the lesions from its prototypes in this class were pink-light red and showed this color tone 

in a histogram graph as a result explanation. This situation is visualized in Fig.2. 
 

 

 

 

 
Figure 2. First Prediction of Trained Model 

 

 

Upon examination of Fig. 2, it is evident that for the class of vascular lesions, the Grad-CAM 

technique generates a comprehensive density framework during the significant pixel analysis. In 

contrast, the prototype method yields a heat density map that highlights the most critical regions of 

the lesion. For Grad-cam, even with high accuracy, there seems to be an overflow into healthy 

tissue, and there are points where the important pixel does not correspond to the original image. 

Here, an explanation of the essential pixels that remain almost within the lesion borders for the 

prototype is presented. 
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From this point on, the codes were changed so that the model would randomly call a much more 

aggressive class, and a prediction was requested between the "nevus" and "melanoma" classes, 

whose color scales were almost similar, and an attempt was made to test whether the result was 

still based on the random color scale or based on the edge depth or size of the lesion. Figure 3 

visualizes the stability of the model between aggressive classes. 
 

 

Figure 3. Testing the model for edge analysis between densely colored classes 

 

Upon examination of Fig. 3, it is evident that one sample categorized within the nevus class has 

been accurately classified as nevus, while one sample within the melanoma class has been 

appropriately identified as melanoma. When the model is tested again with both Grad-cam and 

prototype to explain the classification result, it is seen that Grad-cam remains within the lesion 

borders for the nevus sample and is a bit weak in representing the entire lesion size. However, the 

prototype shows the whole lesion in yellow and shows that it can be important in general, especially 

since edge depth and size are distinctive within the class. As expected from the model, the edge 

depth and parts of other tissue surfaces in the class are indicated with the help of LIME as the 

reason for the prediction of the prototype heat map. In fact, it is argued that the tissue surfaces 

outside the lesion are also drawn, and the same situation is encountered in other samples belonging 

to the nevus class. It is seen that the Grad-cam heat map, which is traditionally used in the 

melanoma class, behaves quite inconsistently. These inconsistencies are expected for classes where 

the color tone and lesion sizes are not very distinctive. However, since the prototype model 

completed the process by specifically seeing the color tone and edge analysis of each class sample, 

even during the training process, it was able to mark the lesion area and the lesion edge area as 

yellow, that is, as an important pixel. It did not make the 'prediction by color' error among the 

aggressive classes, showing that the reason for this prediction result was again the edge features, 

as expected. 
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4. Discussion 

 

 

This study proposes a novel hybrid Explainable AI (XAI) model designed to overcome the 

limitations inherent in traditional convolutional neural network (CNN)-based classification 

methods prevalent in current literature. This model is founded on the EfficientNetB0 architecture, 

seamlessly integrating prototype-based explanations into the learning process. The innovation of 

this approach resides in its dual capability: the model not only engages in classification tasks but 

also facilitates automatic, dynamic reasoning of its predictions at the point of decision-making, 

thereby eliminating the need for post-hoc explanations. In addition to employing the commonly 

utilized Grad-CAM style heatmaps, our model incorporates prototype representations for each 

class, enhancing the decision-making process's interpretability. This dual explanatory framework 

elucidates both the spatial (i.e., "where") and the contextual (i.e., "why") aspects of the model's 

predictions, grounded in texture and color similarity. Doing so advances the discourse on 

explainability in AI, providing a clearer understanding of the rationale behind model decisions. 

 

 

Table 1. Comparison of this study with some current studies 

 

Current 

Studies 

Explanation 

Method 

Type of 

Explanation 

Timing of 

Explanation 

Class- 

Specific 

Details 

Contribution 

of This 

Study 

SAB (2024) 

[16] 

Attention Maps 

Grad-CAM 

Global focus Post-hoc No No explicit 

explanation 

per class 

SHAP and 

LRP 

Comparison 

(2024) [8] 

SHAP, LRP Global 

contribution 

scores 

Post-hoc No No patch- 

level, cause- 

specific 

visualization 

Ladybug & 

LOCapsNet- 

CNN (2024) 

[17] 

Channel-wise 

optimization 

Grad-CAM 

Global 

explanation 

& Area 

Based 

Post-hoc Partial Focused 

mainly on 

general 

accuracy 

optimization 

This Study 

(2024) 

Prototype + 

Grad-CAM + 

LIME/Histogram 

Cause- 

specific 

(color/edge 

explanation) 

Integrated 

with 

prediction 

Yes Provides 

both class- 

level and 

cause- 

specific 

real-time 

explanations 

 

A thorough analysis of the comparative overview presented in Table 1 unequivocally demonstrates 

that prior methodologies leveraging Explainable Artificial Intelligence (XAI) have made 

substantial strides in the field. These approaches, reminiscent of robust frameworks established in 
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literature-based studies, have made a compelling impact by delivering insightful post-hoc 

explanations of model decisions and significantly enhancing the interpretability of deep learning 

systems. These methods have established a strong foundation for making AI decisions more 

transparent, especially by highlighting important regions and feature contributions. Building on 

this solid foundation, the model proposed in this study aims to expand interpretability by 

integrating real-time, cause-specific explanations directly into the prediction process. In addition 

to localizing decision regions, it provides a deeper understanding by distinguishing whether 

decisions are based on color textures or structural edges. By placing prototype assignments in the 

training phase, this model offers a complementary perspective that increases the transparency and 

clinical reliability of AI-driven medical diagnoses. 

 

 

Conclusions 

 

In recent years, there has been a remarkable increase in the number of studies based on deep 

learning (DL) and machine learning (ML) techniques, particularly in the domain of healthcare data 

analysis. However, in critical application areas such as healthcare, merely making predictions has 

proven insufficient; there has been a growing demand for systems that can also explain the 

underlying rationale behind their decisions. Consequently, explainable artificial intelligence (XAI) 

has emerged as a significant research area, yet most studies in the field have remained in early 

developmental stages. One of the main limitations has been the scarcity of systems capable of 

providing complete, causally grounded explanations for classified or segmented regions. To 

address this gap, the present study proposes a hybrid model designed for a 9-class skin lesion 

dataset. The model was constructed by combining a powerful deep learning backbone, 

EfficientNetB0, with a specially designed Prototype Layer, assigning two prototypes to each class 

to facilitate the learning of class-specific distinctive features. Following prediction, a two-stage 

explainability system was integrated: firstly, Grad-CAM, the most widely used method in the 

literature, was employed to generate global heatmaps; secondly, a novel Most Similar Patch 

method, uniquely developed for this study, was applied to analyze the local regions most influenced 

by the selected prototype. During the Most Similar Patch analysis, if the selected patch exhibited 

high edge density, LIME was used to generate contour-based explanations, whereas if the patch 

was characterized predominantly by color or texture distribution, a color histogram was generated 

to support the explanation. The results demonstrated that the model was able to accurately predict 

the correct class among multiple categories and effectively learn the specific internal features of 

each class. Moreover, the model not only provided accurate predictions but also offered causal 

explanations for its decisions, representing a significant advancement beyond the early-stage XAI 

efforts commonly found in the literature. Looking forward, this approach is envisioned to extend 

beyond surface datasets such as skin lesions, toward application in complex histopathological 

datasets involving cellular structures, enabling models to infer and explain tumor, tumor 

microenvironment, and lesion boundaries through deeper causal relationships. Additionally, it is 

anticipated that by allowing internal architectural interventions within models, highly reliable 

clinical explanations and interpretations could be achieved. Although only accuracy and loss were 

utilized as evaluation metrics in this study for comparative purposes, future work will incorporate 

more complex evaluation metrics such as Dice coefficient, micro/macro-ROC AUC. Moreover, 

advanced optimization techniques, including cosine annealing, learning rate warmup, and 
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adversarial training, are planned to be employed to enhance both classification and explainability 

performance further. In this direction, the methods developed are expected to lay a strong 

foundation for the integration of explainable AI systems into clinical research and real-world 

deployment scenarios. 
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