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Abstract     

 
This study presents a comparative analysis of two metaheuristic algorithm Grey Wolf Optimization 

(GWO) and Sea Horse Optimization (SHO for solving Optimal Reactive Power Dispatch (ORPD) 

problem in modern power systems. The ORPD problem aims to minimize active power losses and 

improve voltage profiles while satisfying operational and security constraints. A wind-integrated IEEE 

30-bus test system including 27 control parameters is employed to assess the algorithms under a realistic 

scenario. While GWO, inspired by the social hierarchy and hunting behavior of grey wolves, was 

previously applied with successful outcomes, this paper evaluates the performance of the nature-inspired 

SHO algorithm, which mimics swaying and spatial memory behavior of sea horses. Simulation results 

show that SHO outperforms GWO in minimizing power losses and improving voltage stability in  

considered wind-integrated scenario. These findings highlight the effectiveness of SHO as a promising 

tool for solving complex nonlinear optimization problems in renewable-rich power systems. 
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1. Introduction  

 

The planning and operation of modern electrical power systems have become increasingly complex 

due to the proliferation of distributed generation (DG) sources, rising energy demands, and 

environmental constraints. In this context, the effective control of both active and reactive power 

flows is essential to ensure the secure, economical, and stable operation of power systems.  

The Optimal Reactive Power Dispatch (ORPD) problem is a critical optimization task that 

addresses multiple objectives such as minimizing system losses, improving voltage profiles, and 

complying with operational constraints [1–3]. The ORPD problem involves the coordinated 

optimization of generator voltage magnitudes, transformer tap settings, shunt compensation 

devices, and other controllable parameters. Due to its nonlinear structure, which includes both 

continuous and discrete variables, traditional deterministic methods (e.g., gradient-based 

algorithms) often fall short, especially in large-scale systems, and may become trapped in local 

minima [4]. Consequently, recent years have witnessed a growing interest in metaheuristic 

algorithms. These algorithms are capable of approaching global optima without being strictly 

dependent on the mathematical structure of the problem, making them suitable for solving complex 

and multi-constrained problems such as ORPD [5,6].  

The Grey Wolf Optimization (GWO) algorithm, inspired by the social hierarchy and hunting 
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strategies of grey wolves in the process of exploring and exploiting potential solutions, has become 

a widely adopted method in power systems due to its structural simplicity and low number of 

control parameters [7]. GWO’s fast convergence capability and balanced search behavior in high-

dimensional problems make it an attractive choice for ORPD applications [8]. Studies employing 

GWO have reported significant reductions in total active power losses and improvements in voltage 

profiles [9].  

In contrast, the Sea Horse Optimization (SHO) algorithm, which is a relatively recent development 

inspired by the movement and memory behaviors of seahorses, has been evaluated in only a limited 

number of power system studies to date [10]. A distinctive feature of SHO is its ability to store and 

utilize previous position data, enabling it to perform effective searches in both local and global 

regions of the solution space. This capability suggests that SHO holds promising potential in 

solving complex and high-dimensional optimization problems.  

The objective of this study is to perform a comparative analysis of the GWO and SHO algorithms 

in solving a complex ORPD problem, taking into account the integration of renewable energy 

systems. To this end, a test scenario based on the IEEE 30-bus system was developed, incorporating 

a wind power plant and 27 control variables. Both algorithms were applied under the same scenario, 

and the results were analyzed and compared in terms of system losses and voltage stability. This 

study also serves as one of the preliminary investigations into the potential contributions of the 

SHO algorithm to the power systems optimization literature. 

 

2. ORPD Problem Formulation  

 

 The Optimal Reactive Power Dispatch (ORPD) problem represents a specific formulation within 

the broader scope of the Optimal Power Flow (OPF) framework, wherein the objective is to 

minimize active power losses in transmission networks through the coordinated control of 

generator voltage magnitudes, transformer tap positions, and the reactive power contribution of 

switchable shunt capacitors [11].  ORPD plays a critical role in ensuring the secure and economical 

operation of power systems. Maintaining bus voltages within acceptable limits is essential for 

preserving power system quality and security [12]. Adjusting system variables between their upper 

and lower limits to minimize transmission losses can also impact overall generation costs. 

2.1. Objective Functions 

Objective function(F1)  
     PL = ∑ Pi =  ∑ Pgi −   ∑ Pdi  , i = 1. , Nb           (1) 

In this formulation, 𝑁𝑏 denotes the total number of buses within the power system. 𝑃𝑔𝑖   represents 

the active power generated at bus 𝑖, while 𝑃𝑑𝑖 corresponds to the active power demand at the same 

bus. 𝑃𝐿 indicates the total active power losses in the system, and 𝑃𝑖 refers to the net active power 

injection at bus 𝑖 [13]. 

Objective function(F2) 
    VD = ∑ |Vi − Vi

ref|    , i = 1, . , NPQ        (2) 

The total voltage deviation of all load buses, denoted as 𝑉𝐷, quantifies the cumulative deviation of 

bus voltage magnitudes from their nominal reference values. Here, 𝑉𝑖𝑟𝑒𝑓 represents the reference 

voltage magnitude at bus 𝑖, typically assumed to be 1.0 per unit, while 𝑉𝑖 denotes the actual voltage 

magnitude at the 𝑖𝑡ℎ load bus. The number of PQ or load buses in the system is indicated by the 

parameter NPQ. At each load bus in the power system, this equation measures the discrepancy 

between the desired and actual voltage magnitudes [13]. 
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Fitness function is 

 Min. F =  PL  +  KV ∑ (Vi  −  Vi
lim)

2NPQ

i=1
 +  Kq ∑ (Qgi  −  Qgi

lim)2  +  Kf ∑ (Sl  −  Sli
lim)2Nl

l=1

Ng

i=1
 (3) 

 

The penalty variables in this case are Kf, Kv and Kq which stand for line flow violation, bus voltage 

limit violation, and generator reactive power infringement, respectively. In this context, 𝑁𝑔 

denotes the total number of generator units, while 𝑁𝑙 refers to the number of transmission lines in 

the system. 𝑆𝑙 represents the loading level of the 𝑙 𝑡ℎ transmission line, and 𝑉𝑖 indicates the voltage 

magnitude at bus 𝑖. 𝑁𝑃𝑄  corresponds to the number of PQ-type load buses, and 𝑄 𝑔𝑖 signifies the 

reactive power output of the generator connected to bus 𝑖 [13]. 

2.2. Constrains of Power System’s 

 The Optimal Reactive Power Dispatch problem seeks to optimize specific objective functions 

while ensuring the secure and stable operation of power systems by considering various constraints. 

These constraints represent the physical and operational limits of the system and are typically 

categorized into two main types: equality constraints and inequality constraints. Below, the 

fundamental constraints considered in the ORPD problem are elaborated upon. 

a)- Voltage Magnitude Constraints: 
       Vi−min  ≤   Vi  ≤  Vi−max      (4) 

In this formulation, 𝑉𝑖
min and 𝑉𝑖

max represent the lower and upper bounds, respectively, of the 

voltage magnitude 𝑉𝑖 at bus 𝑖. 
b)- Active Power Generation Constraints: 

      Pgi−min  ≤  Pgi  ≤  Pgi−max                                     (5) 

The active power output of the 𝑖 𝑡ℎ generator is denoted by 𝑃 𝑔𝑖, while 𝑃 𝑔𝑖
max P and 𝑃 𝑔𝑖

min  represent 

its upper and lower operational limits, respectively [13] 

c)- Constrains of Reactive Power Generation: 
      Qgi−min  ≤  Qgi  ≤  Qgi−max        (6) 

The reactive power of the ith generator is shown by Qgi. The ith generator's highest reactive power 

is Qgi-max, and its minimum reactive power is Qgi-min [13]. 

d)- Reactive Power Source Capacity Constraints: 
    qci−min  ≤  qci  ≤  qci−max ,   i ∈  Nc, qci  =  qci−min  +  Nci ∆qci   (7) 

q ci  denotes the reactive power of the 𝑖 𝑡ℎ shunt compensator, 𝑁𝐶 is the total number of such devices, 

and 𝑞 𝑐𝑖
min and 𝑞 𝑐𝑖

max define its operational limits [13]. 

e)- Transformer Tap Position Constraints: 
   Ti−min  ≤  Ti  ≤  Ti−max, i ∈  NT, Ti  =  Ti−min  +  NTi∆Ti     (8) 

T i is the transformer tap ratio, NT is the number of tap setting transformers, T i-min and T i-max are 

the minimum and maximum limits of the transformer tap ratio [13]. 

 

3. Implementation of GWO-SHO Algorithm for Solving the ORPD Problem with Wind 

Placement  

In the context of applying the Grey Wolf Optimization algorithm to solve the Optimal Reactive 

Power Dispatch problem with wind integration, suitable buses within the IEEE 30-Bus power 

system were identified for wind turbine placement. The performance outcomes of the GWO and 

Sea Horse Optimization techniques were then compared, adhering to the constraints inherent to the 

ORPD problem. 

3.1. GWO-Based Control Strategy for Wind-Integrated IEEE 30-Bus System with 27 Parameters 

 The IEEE 30-bus power system was expanded in this work to include 27 control variables, making 
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wind power integration easier. These factors include power control and generator voltage 

magnitude control. The following are the particular control variables taken into account [13].  

- 7 variables affecting generator bus voltages with wind buses  

- 7 wind power generation variables  

- 4 transformer TAP setting variables.  

- 9 factors pertaining to the VAR compensators' reactive power 

Table 1 provides the upper and lower bounds for various control variables, including wind power 

output, generated power, voltage levels, transformer tap settings, and reactive power compensation 

devices. These specified limits establish the permissible operating ranges for each variable during 

the optimization process, ensuring that the solutions adhere to system constraints and contribute to 

enhanced overall performance. 

Table 1. Limit Settings for control variables for IEEE 30-bus system [13] 

Variables Upper Limit Lower Limit 

Wind Power 0.10 p.u. 0.00 p.u. 

Generated Power 2.00 p.u. 0.05 p.u. 

Voltages 1.10 p.u. 1.00 p.u. 

Tap Settings 1.10 p.u. 0.90 p.u. 

Compensation Devices 5 MVAR 0 MVAR  

 Table 2 provides a detailed evaluation of the Grey Wolf Optimization (GWO) algorithm's 

effectiveness in the IEEE 30-bus test system, emphasizing performance indicators such as voltage 

deviation and total active power loss. The table outlines the lower and upper bounds defined for 

each control parameter, including generator outputs, voltage magnitudes, transformer tap positions, 

and reactive power compensation units. Additionally, it presents the optimal values obtained 

through the GWO algorithm within these constraints, demonstrating its capability to enhance 

system performance while maintaining compliance with operational limits [13]. 
Table 2. GWO-Based Optimization of Control Variables for ORPD in the IEEE 30-Bus System with Wind 

Integration [13] 

Control Variables Limits IEEE-30 Bus Test 

Case with GWO Upper Limits Lower Limits 
Pwind 0.10 0.00 0.0982 

P1 1.00 0.50 0.2351 
P2 0.80 0.20 0.4848 
P5 0.50 0.15 0.4700 
P8 0.50 0.10 0.4688 
P11 0.50 0.10 0.4693 
P13 0.50 0.12 0.4617 

Vwind 1.10 1.00 1.0604 
V1 1.10 1.00 1.0531 
V2 1.10 1.00 1.0436 
V5 1.10 1.00 1.0500 
V8 1.10 1.00 1.0977 
V11 1.10 1.00 1.0473 
V13 1.10 1.00 0.9781 
T11 1.10 0.90 0.9500 
T12 1.10 0.90 1.0500 
T15 1.10 0.90 1.0343 
T36 1.10 0.90 0.9884 

QC10 5.00 0.00 4.9322 
QC12 5.00 0.00 4.3456 
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QC15 5.00 0.00 0.7096 
QC17 5.00 0.00 2.2971 
QC20 5.00 0.00 1.6113 
QC21 5.00 0.00 3.0152 
QC23 5.00 0.00 0.3921 
QC24 5.00 0.00 2.2213 
QC29 5.00 0.00 0.4657 

Totally Loss (MW)  1.8010 
Voltage-

Deviation(p.u) 
1.0154 

Incorporating 𝑃 wind and 𝑉 wind within the set of control variables, the GWO algorithm operated 

efficiently within the given bounds. The inclusion of wind power (0-10 MW) and wind bus voltage 

control parameters in the GWO (proposed) algorithm to optimise the system with 25 control 

variables without the addition of the IEEE 30-bus wind farm without changing the generator power 

ratings resulted in 9.8 MW wind power control and 1.0604 p.u. wind bus voltage among the 27 

optimised control variables. This proved that GWO successfully integrated the wind unit and 

control parameters, producing positive outcomes in the IEEE 30 test system scenario. The control 

variables of the IEEE 30-bus test system were successfully optimized, resulting in a voltage 

deviation of 1.0154 p.u. and a total active power loss of 1.8010 MW. As depicted in Figure 1 [13], 

the proposed GWO algorithm demonstrates effective convergence behavior under Scenario 3, 

utilizing different population sizes (20, 30, and 40 agents) in the power loss minimization process.

 
Figure 1. Convergence patterns for 27 variables IEEE 30-bus test system using GWO 

 

Similarly, the IEEE 30-bus power system with 40 agents demonstrated exceptional performance, 

according to the voltage deviation convergence study of the GWO (proposed) algorithm. in 

achieving convergence for the system with 27 control variables and wind turbine integration, as 

shown in Figure 2[13]. 
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Figure 2. Voltage deviation convergence models for IEEE 30-bus system using 27 control variables  

 

In the IEEE 30-bus transmission system, buses other than 1, 2, 5, 8, 11, and 13 were connected to 

wind energy as a renewable energy source. Values of power loss were noted for every bus. Figure 

3 illustrates that, with a power loss of 1.801 MW, the wind connected to bus 21 results in the least 

amount of power loss [13]. 

 
Figure 3. Power loss convergence patterns for IEEE 30-bus system with 27 control variables using GWO [13] 
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3.2. IEEE 30-bus Power System with 27 Control Variables Wind İntegration using SHO  

In this study, the IEEE 30-bus system was utilized to evaluate the effectiveness of the Sea Horse 

Optimization (SHO) algorithm in addressing the Optimal Reactive Power Dispatch (ORPD) 

problem. For comparative purposes, it is noted that the IEEE 30-bus system comprises 5 PV buses, 

21 load buses, 41 branches, 4 transformer tap changers, and 3 shunt capacitors. In contrast, the 

IEEE 118-bus system includes 54 PV buses, 99 loads, 186 branches, 9 tap changers, and 14 shunt 

VAR compensators. The detailed system parameters are provided in Table 1 [13]. Table 3 offers a 

comprehensive performance evaluation of the SHO algorithm applied to the IEEE 30-bus test 

system, with particular emphasis on voltage deviation and total active power loss. The table also 

outlines the predefined lower and upper operational limits for each control variable, including 

generator outputs, bus voltages, transformer tap positions, and shunt reactive power devices. It also 

details the optimized values obtained by the SHO algorithm within these specified constraints, and 

highlights its effectiveness in improving system performance while adhering to operational limits. 
Table 3. Application of SHO to ORPD Control Variables in the IEEE 30-Bus Test System with Wind Integration 

Control Variables 
Limits SHO (caseIEEE-

30) Upper Lower 

    Pwind 0.10 0.00 0.0953 

P1 1.00 0.50 0.1625 

P2 0.80 0.20 0.4989 

P5 0.50 0.15 0.4697 

P8 0.50 0.10 0.4511 

P11 0.50 0.10 0.4700 

P13 0.50 0.12 0.4700 

   Vwind 1.10 1.00 1.0038 

V1 1.10 1.00 1.0531 

V2 1.10 1.00 1.0859 

V5 1.10 1.00 1.0500   

V8 1.10 1.00 1.0947 

V11 1.10 1.00 1.0571 

V13 1.10 1.00 0.9781 

T11 1.10 0.90 1.0473 

T12 1.10 0.90 0.9685 

T15 1.10 0.90 1.0392 

T36 1.10 0.90 1.0312 

QC10 5.00 0.00 4.0804 

QC12 5.00 0.00 0.9272 

QC15 5.00 0.00 3.2867 

QC17 5.00 0.00 1.1192 

QC20 5.00 0.00 3.3433 

QC21 5.00 0.00 1.0827 

QC23 5.00 0.00 2.6595 

QC24 5.00 0.00 3.4334 

QC29 5.00 0.00 0.2785 

Total Loss (MW)   1.7708 

Voltage Deviation (pu)   1.0174 
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As seen in Table 3, the effect of the SHO algorithm on the ORPD problem has been investigated 

and the voltage deviation and total loss values have been written. In the system analysis with 27 

control variables, a 0-10 MW wind turbine has been integrated into the IEEE 30-bus power system. 

 
Figure 4. Power Loss Convergence Characteristics Using SHO in the IEEE 30-Bus Test System with 27 Control 

Variable 

As illustrated in Figure 4, the power loss convergence analysis for the wind-integrated IEEE 30-

bus system with 27 control variables highlights the effectiveness of the proposed SHO algorithm 

when applied with a population size of 40 agents. 

 

 
Figure 5. Voltage deviation convergence profiles for IEEE 30-bus system with 27 control variables using SHO 

 

The voltage deviation convergence analysis for wind integrates 27 control variables of the IEEE 

30-bus power system demonstrates the robust convergence capability of the proposed SHO 

algorithm when utilizing a population of 40 agents, as illustrated in Figure 5. 
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Figure 6. Power loss convergence patterns for IEEE 30-bus system with 27 control variables using SHO 

 

Wind-powered distributed generation units (DGUs) were deployed across multiple buses in the 

IEEE 30-bus transmission system, excluding buses 1, 2, 5, 8, 11, and 13 from integration. A 

comprehensive analysis of power loss values was conducted for each bus within the system. The 

findings revealed that the DGU incorporated to bus 18 achieved the lowest power loss, measuring 

1.7708 MW [13]. 

 

4. Discussion  

 

In this study, the performance of the Grey Wolf Optimization (GWO) and Sea Horse Optimization 

(SHO) algorithms was comparatively evaluated within the scope of an Optimal Reactive Power 

Dispatch (ORPD) scenario involving 27 control variables and wind power integration. Both 

algorithms were tested on the IEEE 30-bus system, with a focus on key performance indicators 

such as active power loss, voltage deviation, and the identification of optimal generation locations. 

In the GWO-based implementation, the integration of a wind turbine at Bus 21 resulted in the 

lowest recorded power loss of 1.801 MW. Conversely, the highest power loss of 3.393 MW 

occurred when the wind unit was placed at Bus 9. This corresponds to an approximate difference 

of 88.34%, clearly demonstrating the impact of wind unit placement on system performance. 

Additionally, the GWO algorithm not only achieved a reduction in power losses but also improved 

the voltage profile.  

These outcomes highlight the algorithm’s effective global search capability and its ability to 

manage system constraints efficiently. In comparison, the SHO algorithm yielded a minimum 

power loss of 1.7708 MW when the distributed generation unit (DGU) was placed at Bus 18. The 

maximum power loss, again observed at Bus 9, was 3.1794 MW. The corresponding difference of 

approximately 79.55% indicates the SHO algorithm’s high precision in optimal placement and 

reactive power control. 

The Sea Horse Optimizer (SHO) exhibited notable performance in integrating variable renewable 

energy sources particularly wind power due to its memory-guided search capability and adaptive 

exploitation-exploration balance. Overall, although both algorithms effectively addressed the 
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ORPD problem, SHO yielded more favorable outcomes by attaining lower active power losses and 

enhanced voltage stability across the network. The nature-inspired, intelligent structure of the SHO 

algorithm contributes to a more efficient generation-load balance across the network. These 

findings emphasize the importance of utilizing advanced metaheuristic algorithms like SHO for 

the effective integration of renewable energy into modern power systems. 
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