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Abstract     

 
Off-policy reinforcement learning improves sample efficiency by reusing data from a behavior policy 

different from the target policy. This benefits costly domains like robotics and healthcare, enhancing 

generalization and rare-event learning. However, high variance and instability remain challenges, risking 

local optima convergence. This study introduces Hybrid Importance Sampling (HIS), combining 

adaptive clipping and dynamic normalization to stabilize importance weight estimation. Adaptive 

clipping limits extreme weights, reducing variance, while dynamic normalization balances weight 

distribution. Compared to standard methods such as Ordinary Importance Sampling (OIS), Weighted 

Importance Sampling (WIS), and Per-Decision Importance Sampling (PDIS), HIS shows superior 

stability in high-variance settings, making off-policy learning more reliable for real-world applications. 
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1. Introduction  

 

In reinforcement learning, off-policy methods enable agents to learn from data generated by a 

behavior policy different from the current target policy [1, 2]. Unlike traditional on-policy 

approaches, off-policy algorithms improve sample efficiency by reusing past experiences or 

simulation data [3, 4]. This method is particularly advantageous in real-world applications where 

data collection is costly. 

 

The key benefit of off-policy learning is its ability to enhance data diversity. By learning from 

experiences generated by different policies, agents develop more generalizable strategies [5, 6]. 

This strengthens policy adaptation in complex environments. Additionally, experience replay 

mechanisms stabilize learning by repeatedly incorporating rare events into training [7,8]. 

 

However, off-policy methods have significant drawbacks. The primary issue is learning instability 

due to high variance [9, 10]. Distributional mismatch between behavior and target policies can lead 

to Q-value overestimation or incorrect convergence [11, 12]. Another challenge is premature 

convergence, where agents may get trapped in local optima, losing exploration capability [13, 14]. 

 

Importance sampling techniques address these issues by reweighting behavior policy data to match 

the target distribution [15, 16]. For instance, Q-Prop combines importance sampling with actor-
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critic architectures for low-variance, fast learning [15]. Similarly, emphatic weightings balance 

policy updates by prioritizing critical states [9, 13]. 

 

This study tackles two core challenges in off-policy RL: high variance from uncontrolled 

importance weight growth and slow convergence. We propose Hybrid Importance Sampling (HIS), 

integrating: 

 

1. Adaptive Clipping: Controls weight explosion by thresholding extreme values 

 

2. Dynamic Normalization: Maintains stable weight distributions through adaptive scaling 

 

By synergizing these components, HIS significantly reduces variance, enhances policy evaluation 

reliability, and preserves environmental adaptability. The method is particularly promising for real-

world applications like robotics, autonomous vehicles, and medical decision systems where data 

collection is costly or risky. 

 

 

2. Materials and Method 

 

This study compares the policy evaluation performance of different importance sampling 

techniques within a Reinforcement Learning (RL) problem framework based on Markov Decision 

Processes (MDPs). The methodology consists of four main components: (1) Problem and 

simulation dynamics, (2) proposed hybrid importance sampling models, (3) baseline methods for 

comparison, and (4) performance evaluation metrics. 

 

2.1. Problem and Simulation Dynamics 

 

The visual representation in Figure 1 illustrates the action selection and reward acquisition process 

in each episode. This process was repeated for 2,000 episodes to compute the average reward. The 

study was conducted over 10 independent runs, each tested with a different random initialization. 

The available actions are categorized as "up" and "down." The target policy always selects the "up" 

action, while the behavior policy chooses "up" with 75% probability and "down" with 25% 

probability.  

 

 
 

Figure 1. Transition dynamics and action probabilities under the target and behavior policies. 
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When considering the transition probabilities for the 'up' action, there is an 80% chance of moving 

correctly and receiving a reward of 1. Conversely, there is a 20% chance of incorrect movement, 

which results in no reward. 

 

2.2. Hybrid Importance Sampling Model 

 

To mitigate instability caused by large importance weights, we developed a framework that 

dynamically adjusts weight scaling and clipping based on recent observations. The core models 

are: 

 

• Adaptive Clipping (HybridClip): This method applies soft thresholding to importance 

weights, preventing extreme values. Clipping bounds are adjusted using a moving 

window of recent weights, ensuring stability without introducing excessive bias. 

 

• Dynamic Normalization (HybridNorm): Instead of fixed normalization, this approach 

standardizes weights based on their recent mean and variance, reducing variance while 

minimizing bias. 

 

• Full Hybrid Model: Combines both adaptive clipping and dynamic normalization to balance 

the bias-variance trade-off. 

 

2.3. Baseline Importance Sampling Methods (For Comparison) 

 

To evaluate the effectiveness of the proposed hybrid models, we compared them against three 

standard techniques: 

 

• Ordinary Importance Sampling (OIS): A basic variance reduction technique in Monte Carlo 

methods, where expected values under the target distribution are estimated by weighting 

samples drawn from a proposal distribution [17]. 

 

• Weighted Importance Sampling (WIS): Addresses high variance in classical IS by 

normalizing raw importance weights across all samples, yielding more stable and lower-

variance estimates [18]. 

 

• Per-Decision Importance Sampling (PDIS): An adaptation of IS for sequential decision-

making, where importance ratios are computed per decision step to stabilize return 

estimation in long-horizon tasks [19]. Unlike traditional IS, which multiplies weights 

over entire trajectories (leading to exploding variance), PDIS mitigates cumulative 

variance by step-wise reweighting. 

 

2.4. Performance Evaluation Metrics 

 

To comprehensively assess the effectiveness and robustness of the evaluated methods, multiple 

quantitative and statistical criteria were employed. Performance was analyzed through dynamic 

trend visualizations and distribution-based metrics, ensuring a holistic comparison. First, running 



 

A. KALA et al./ ISITES2025 Diyarbakır - Türkiye    

 

4 

 

mean of value estimates (window size = 500) was used to track the smoothed convergence behavior 

of each algorithm over time. Complementing this, the running variance of value estimates 

highlighted stability and consistency in learning, while the running mean squared error (MSE) 

(window size = 500) quantified deviations from ground truth values. Additionally, running average 

rewards provided insight into the practical efficacy of each method in maximizing returns. To 

examine final performance, the distribution of final estimates (last 500 episodes) was visualized 

via box plots, revealing bias and dispersion, whereas the distribution of value estimates (density 

plot) illustrated overall estimation patterns. Statistical validation was further conducted through t-

tests and effect size analysis to determine significant differences between methods, supported by a 

summary statistics table reporting mean, variance, MSE, and relative efficiency (1/Var). Together, 

these metrics ensured a rigorous, multi-faceted evaluation of algorithmic performance.  

 

 

3. Results and Discussion 

 

In this study, the performance of the proposed Hybrid Importance Sampling (HIS) method was 

compared with standard techniques including Ordinary Importance Sampling (OIS), Weighted 

Importance Sampling (WIS), and Per-Decision Importance Sampling (PDIS). 

 

The rolling average graph in Figure 2 (Window Size = 500) shows that HIS exhibited lower 

variance in mean estimates and demonstrated consistent convergence behavior, particularly 

between episodes 800-2000. For instance, while HIS maintained stable estimates in the ~25-35 

range, OIS showed high fluctuations, and WIS and PDIS displayed more pronounced oscillations. 

 

 
 

Figure 2. Mean of value estimates 

 

The variance analysis presented in Figure 3 reveals that hybrid methods provided significantly 

lower and more stable variance values compared to standard techniques. While OIS showed the 

highest variance values, WIS and PDIS performed better than OIS. However, the hybrid methods, 

particularly through the combination of dynamic normalization and adaptive clipping techniques, 

most effectively reduced variance. Furthermore, as the number of episodes increased, the variance 
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in hybrid methods decreased more consistently. 

 
 

Figure 3. The variance of value estimates 

 

The Moving Average Mean Squared Error (MSE) analyses in Figure 4 confirm that hybrid methods 

provide a clear performance advantage over standard techniques. The Hybrid method showed the 

best performance with the lowest MSE values, while OIS performed worst, and WIS and PDIS 

showed intermediate performance. These findings demonstrate that hybrid methods both improve 

estimation accuracy and stabilize the learning process. 

 
 

Figure 4. Mean squared error (MSE) 

 

The average reward graph in Figure 5 shows that the hybrid model produced lower reward values. 

This can be explained by HIS clipping overly optimistic estimates to reduce variance and learning 

more conservative strategies. Although the hybrid model sacrificed some reward for stability, its 

low MSE and variance values prove that its estimates are reliable. 
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Figure 5. The average rewards. 

 

Figure 6 displays the distribution of value estimates produced by different importance sampling 

methods in the last 500 episodes. Hybrid methods (Hybrid, HybridClip, HybridNorm) generated 

much narrower and more concentrated estimates compared to standard methods (OIS, WIS, PDIS). 

While OIS and WIS showed a wide spread between 0 and 120, the Hybrid method concentrated in 

the 20-40 range, providing more consistent and stable estimates. This confirms that hybrid methods 

successfully reduced variance and controlled outliers. PDIS performed better than OIS and WIS 

but still lagged behind hybrid methods. 

 

 
 

Figure 6. The distribution of final estimates 

 

Figure 6 compares the probability density functions of the estimates. Hybrid methods (Hybrid, 

HybridClip, HybridNorm) showed a sharp, symmetric distribution close to the true value (0.2), 

while OIS and WIS had flat, wide distributions. This indicates that OIS and WIS produced high-

variance, noisy estimates. HybridNorm achieved the highest density in the 0.1-0.3 range, showing 

the most stable performance, while HybridClip and Hybrid also concentrated in a narrow band. 
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PDIS showed lower density than hybrid methods but performed better than OIS and WIS. This 

graph supports the superiority of hybrid methods in both accuracy and consistency. 

 

 
 

Figure 7. Markov decision processes (MDPs) 

 

The statistical test results in Table 1 demonstrate that hybrid methods show statistically significant 

differences compared to standard techniques. The Hybrid method in particular has the highest 

Cohen's d values when compared to OIS, WIS, and PDIS, indicating large effect sizes. 

Additionally, all comparisons show p-values below the significance threshold (0.05), supporting 

the reliability of the results. 

 

Table 1. The statistical test results. 

 

Id Comparison t-statistic p-value Cohen's d Significant 

0 OIS vs WIS 0.000000 1.000000e+00 0.000000 False 

1 OIS vs PDIS 40.000379 1.361312e-294 1.265239 True 

2 OIS vs Hybrid 64.032996 0.000000e+00 2.025408 True 

3 OIS vs HybridClip 54.714520 0.000000e+00 1.730658 True 

4 OIS vs HybridNorm 62.197067 0.000000e+00 1.967336 True 

5 WIS vs PDIS 40.000379 1.361312e-294 1.265239 True 

6 WIS vs Hybrid 64.032996 0.000000e+00 2.025408 True 

7 WIS vs HybridClip 54.714520 0.000000e+00 1.730658 True 

8 WIS vs HybridNorm 62.197067 0.000000e+00 1.967336 True 

9 PDIS vs Hybrid 40.304937 2.222933e-298 1.274873 True 

10 PDIS vs HybridClip 21.893717 1.909373e-100 0.692513 True 

11 PDIS vs HybridNorm 36.425168 4.045903e-251 1.152153 True 

12 Hybrid vs HybridClip -32.323057 7.740366e-204 -1.022400 True 

13 Hybrid vs HybridNorm -6.384568 1.915271e-10 -0.201948 True 

14 HybridClip vs HybridNorm 24.341063 3.739859e-122 0.769925 True 
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The performance metrics summary in Table 2 confirms that hybrid methods outperform standard 

methods in terms of mean, variance, and MSE. The Hybrid method stands out with the lowest 

variance (7.288) and MSE (17.439) values, while OIS and WIS have the highest variance (494.604) 

and MSE (1738.651) values. These results show that hybrid methods provide significant 

advantages in stability and efficiency for off-policy learning. 

 

Table 2. The performance metrics summary 

 

Id Method Mean Variance MSE Relative Efficiency (1/Var) 

3 Hybrid 3.386018 7.288191 17.438903 0.137208 

5 HybridNorm 4.062562 15.157929 30.077313 0.065972 

4 HybridClip 7.551323 25.907486 79.949436 0.038599 

2 PDIS 13.373487 115.457750 288.998501 0.008661 

0 OIS 35.471059 494.603887 1738.651486 0.002022 

1 WIS 35.471059 494.603887 1738.651486 0.002022 

 

 

Conclusions 

 

This study proposes a Hybrid Importance Sampling (HIS) method to address the high variance and 

instability issues in off-policy reinforcement learning. By combining adaptive clipping and 

dynamic normalization techniques, HIS effectively controls the unbounded growth of importance 

weights and enhances the stability of estimates. Experimental results demonstrate that HIS achieves 

lower variance and MSE values compared to standard methods (OIS, WIS, PDIS), while 

maintaining balanced learning dynamics. 

 

However, the hybrid methods' relatively lower average reward performance indicates a trade-off 

between stability and reward maximization. While this characteristic may be advantageous in risk-

sensitive applications, it requires careful consideration in scenarios prioritizing high rewards. 

Future work will focus on refining hybrid methods to better optimize the reward-variance trade-

off. 

 

In conclusion, the HIS method presents a promising approach for enhancing the efficiency and 

reliability of off-policy learning in real-world applications such as robotics, autonomous driving, 

and medical decision support systems. 
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