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Abstract 

 
Validation is an important part of the development process of real-time systems. During validation, it 

should be proved that, the system meets its timing constraints. Therefore, worst-case execution time 

(WCET) analysis is performed. Currently, several WCET analysis tools are being developed. 

Researchers who develop new WCET analysis tools, need benchmarks to evaluate and compare their 

tools with alternatives. These benchmarks are called WCET benchmarks. In this paper a new WCET 

benchmark suite named ABench2020 is introduced. Its main focus is to provide benchmark programs in 

Ada programming language for WCET research. Therefore, ABench2020 includes several benchmark 

programs which were written in Ada programming language. The benchmark programs implement 

different program structures and properties to help researchers test their systems from different aspects. 

ABench2020 was published as open source. It is freely available over the Internet. 
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1. Introduction 

 

Benchmark programs and suites are widely used to compare computer systems, real-time systems, 

algorithms, methods, etc. Different kinds of benchmarks are used to evaluate different properties 

like execution time, energy usage, network performance and power characteristics. Benchmark 

applications are of critical importance to evaluate and compare newly developed methods, tools 

and systems. 

 

Today, real-time systems [1], [2] are also widely used in several different areas such as industry, 

automotive, telecommunication, and Internet of Things. A real-time system is a type of computer 

system which is generally developed to perform some specific task(s) and works as part of a bigger 

system. Typically, real-time systems have little or no user interface, and they usually have power 

limits. In development of real-time systems, different programming languages are used like C, 

C++, Java [3], and Ada [4], [5]. 

 

One of the most important properties of real-time systems is time. Real-time systems have 

deadlines, which they need to meet during execution. Real-time programs should not miss their 

deadlines while producing correct result(s). Therefore, before deploying a real-time system, 

developers should measure and/or calculate the timing information of real-time program and make 

sure it meets its deadlines. Obtaining information about the timing behavior of the real-time 
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program is called worst-case execution time (WCET) analysis. Currently there are several tools 

and methods which help WCET analysis [6]–[9]. 

 

WCET analysis is an active research area, and new tools are developed currently. Researchers who 

develop new WCET analysis tools, need benchmark programs to evaluate and compare their work 

with alternatives. These benchmarks are called WCET benchmarks. The need of WCET 

benchmarks is the first motivation of this study. Benchmarks which help WCET analysis studies 

are generally developed using C programming language. However, WCET community also needs 

benchmark applications in different programming languages [10]. This is the second motivation of 

our study. 

 

In this study, in accordance with our motivations we developed a new benchmark suite named 

ABench2020. It includes 12 benchmark programs written in Ada programming language. Each 

program in the benchmark suite implements a common algorithm in computer science. The 

contributions of this study are given below: 

 

• We introduce a new benchmark suite named ABench2020, to help the evaluation and 

comparison of WCET analysis tools. 

• It was developed using Ada programming language to meet the need of benchmark programs 

in different programming languages. 

• It includes several programs which implement different program structures and properties to 

help the evaluation of WCET analysis tools from different aspects. 

• It was published as open source, and freely available over the Internet [11]. 

 

The developed benchmark suite targets WCET community and aims to help advancing WCET 

research. Although it is developed for WCET community, it can also be used to assess the 

performance of different kinds of systems. 

 

The paper is organized as follows. In Section 2, a literature review on benchmark is given. 

ABench2020 is explained in Section 3. Section 4 discusses the study and give information about 

possible future works. 

 

 

2. Related Work 

 

Benchmarking is an active study area on computers. Benchmarks are needed to measure, evaluate 

and compare different performance metrics of computer systems, tools and methods. There are 

numerous benchmarks developed for different purposes both in academia and industry. This 

section gives a summary of different benchmarks. 

 

Several benchmarks on different areas are being developed by research community. For example, 

big data is a growing area which needs benchmarks. BigDataBench-S [12] is an open source 

benchmark suite developed to measure the performance of big data management systems. PARSEC 

benchmark suite [13] focuses on the evaluation of Chip-Multiprocessors (CMPs). It includes 
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parallel programs to help CMP research. Rodinia benchmark suite [14] targets heterogeneous 

computing. It aims the evaluation of multicore CPU and GPU platforms. Visual Road [15] focuses 

on the video database management systems (VDBMs). ompTGB [16] benchmark is based on 

OpenMP and aims to help the evaluation of real-time scheduling approaches on OpenMP based 

parallel tasks. 

 

There are also both commercial and open source benchmarks which target the evaluation of 

computer systems from different perspectives. MiBench is a free benchmark suite for the 

evaluation of embedded systems [17]. Embedded Microprocessor Benchmark Consortium 

(EEMBC) [18] is an organization which provides benchmarks to asses different characteristics of 

embedded systems. Standard Performance Evaluation Corporation (SPEC) [19] develops different 

kinds of benchmark suites to evaluate various performance characteristics of computer systems. 

 

Benchmarks for Java environments is another study area. For example, DaCapo benchmarks [20] 

target the evaluation of Java platforms. CDx [21] focuses on the validation of real-time java virtual 

machines. JemBench [22] aims to help the evaluation of embedded Java platforms. 

 

As mentioned above, this study focuses on benchmarks for WCET analysis works. Currently 

several benchmarks are available for the evaluation and comparison of WCET analysis tools. One 

of the WCET benchmark suites is the Mälardalen WCET Benchmarks [10]. It includes C programs 

and is mostly focused on flow analysis. PBench, is a parallel benchmark suite which aims to help 

the evaluation of WCET analysis tools from a multi-threaded perspective [23]. It is also open 

source and includes several sequential and parallel benchmark programs written in C programming 

language. MBBench [24] is another open source WCET benchmark suite. Its main focus is 

measurement-based WCET analysis tools. It is composed of C programs. TACLeBench [25] is an 

open source benchmark collection. It includes several benchmark programs from different research 

groups and tool vendors. The programs are in C programming language. PapaBench [26] and 

EMSBench [27] are two benchmarks which mimic real-time industrial applications. GenE [28] is 

a benchmark generator which generates benchmarks and provides flow facts. TASKers [29] 

generates real-time systems which helps the evaluation of WCET analysis and scheduling analysis 

techniques. 

 

 

3. ABench2020 

 

In this section we demonstrate ABench2020 in detail. In each part, a different aspect of the 

benchmark suite is explained. 

 

3.1. Design and Development 

 

The design of the benchmark was achieved in four stages: requirement analysis, operating system 

selection, feature selection, and algorithm selection. 

 

In the first stage of the design of ABench2020, requirement analysis was performed. During 

requirement analysis, benchmark studies about WCET analysis were examined, and looked for 
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needed improvements. One of them was the need of benchmark programs in different 

programming languages other than C. According to this need, we decided to develop the 

benchmark suite in Ada programming language. 

 

In the second stage, operating system support was determined. We chose to support Linux 

distributions, as they are open source, freely available, and widely used by research community. 

Although the benchmark programs were developed for Linux distributions, we believe that they 

can easily be compiled for other platforms which support Ada programming language as well. 

 

The third stage is the feature selection stage. In this stage, programming structures and properties 

to be supported by the benchmark suite were determined. Feature selection is one of the most 

important parts of the design process. During the use of benchmark suite in evaluation, researchers 

want to test the behavior of their tools on different programming structures and properties. 

Therefore, benchmark suites should include several programs which implement different 

programming structures (decisions, loops etc.), and support different programming properties 

(single path, multi-threaded etc.). The feature list of ABench2020 is shown in Table 1. 

 

Table 1. Feature List of ABench2020 

 
Feature Name Acronym Description 

Single Threaded ST Denotes that the program is sequential. It contains single thread of execution. 

Multithreaded MT Denotes that the program is parallel. It contains multiple threads of execution. 

External Routine ER Denotes that there is external routine call in the program. 

Single Path SP Denotes that the program always follows the same path in each run. The flow of 

the program is always the same. 

Multipath MP Denotes that the program may follow different paths in different runs. The flow 

of the program may change in different runs. 

Dynamic Memory DM Denotes that the program makes dynamic memory allocation. It uses heap. 

Loop L Denotes that the program includes loop structure. 

Nested Loop NL Denotes that the program includes nested loop structure. 

Decision D Denotes that the program includes decision structure. 

Array A Denotes that the program uses array. 

Recursion R Denotes that there is recursive function call in the program. 

Bit Level Operation BLOp Denotes that bit level operation is present in the program like bit shifting etc. 

Floating-Point Operation FPOp Denotes that the program performs operations on floating-point numbers. 

Integer Operation IntOp Denotes that the program performs operations on integers. 

Command Line Argument CmdArg Denotes that the program takes command line argument during startup. 

File Input/Output FileIO Denotes that the program performs file input/output operations. 

 

The fourth stage is the algorithm selection stage. In this stage, we determined the algorithms to 

implement in benchmark programs. The algorithms were chosen in a way that their implementation 

will require the usage of the features determined above. Therefore, a well-known algorithm of 

computer science for each program were selected. 

 

After the design phase, the benchmark programs were developed using Ada programming 

language. The tests were performed on Pardus 19.3 Linux distribution. During tests, the programs 
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were compiled using GNAT (GNU Ada) 8.3.0. 

 

3.2. Benchmark Details 

 

There are 12 different benchmark programs in ABench2020. Each program implements a different 

algorithm and uses various features from Table 1. The programs and their supported features are 

shown in Table 2. 

 

In the table, each row indicates a program in ABench2020, and each column indicates a feature. 

The acronyms of the feature names are written in the column headers. The plus (+) and minus (–) 

symbols in the rows indicate that the program supports the corresponding feature or not 

respectively. As can be seen from the table, the benchmark programs were selected specifically to 

cover most of the features in the feature list. Names of the programs were determined by 

considering the algorithms they implement. By doing this we aimed to help researchers to easily 

identify the operation of the program without looking into its code. 

 

Table 2. Program List of ABench2020 

 
Program Name Features 

 
ST MT ER SP MP DM L NL D A R BLOp FPOp IntOp CmdArg FileIO 

BinarySearchTree + – – + – + + – + + + + – – – – 

BitwiseShift + – + + – – – – – – – + – – – – 

Correlation + – + + – – + – – + – – + – – – 

CorrelationFI + – + + – – + – – + – – + – – + 

Factorial + – + + – – + – – – – – – + + – 

Fibonacci + – + – + – – – + – + – – + + – 

LinearSearch + – – + – – + – + + – – – – – – 

LinkedList + – – + – + + – + + – – – – – – 

MatrixMultiplication + – – + – – + + – + – – – + – – 

PFactorial – + + – + – + – + – – – – + + – 

SelectionSort + – – + – – + + + + – – – – – – 

Softmax + – – + – – + – – + – – + – – – 

 

BinarySearchTree program firstly creates a binary search tree and then traverses the newly 

created tree. The node values of the tree are hardcoded. Notable features of this program are 

dynamic memory allocation and recursive routine call. BitwiseShift program performs shift right 

and shift left operations on two hardcoded unsigned integers. This is the only program in 

ABench2020 which performs bit level operations. Correlation program calculates correlation of 

two samples. The samples are hardcoded. Two notable features are the loop structure and floating-

point operation. CorrelationFI program is the replica of Correlation program with one difference. 

It performs file input operations. The samples are read from a text file. These two programs can 

also be used together to benchmark file I/O operations. 

 

Factorial program takes input from command line and calculates the factorial of the input value. 
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Its notable features are loop structure and taking command line argument. Getting input from the 

command line makes it a good candidate for testing measurement-based tools. PFactorial program 

is the parallel version Factorial program. It includes all of the properties of Factorial program. 

Aside from these, its distinguishing feature is supporting multi-threaded operations. It calculates 

the factorial value by using two tasks (threads). Fibonacci program calculates Fibonacci value on 

a given index in the Fibonacci sequence. The index value is passed to the program as a command 

line argument. Notable features of this program are taking input from command line and recursive 

routine call. 

 

LinearSearch program performs linear search operation on a hardcoded array of integers. Two 

notable properties are using dynamically allocated array and not using external routines. The index 

values of the search key are stored in a dynamically allocated array. It does not use external routine 

and hence self-contained. Therefore, it can be used for platform independent tests. LinkedList 

program creates a singly linked list. Its distinguishing feature is dynamic memory allocation. 

MatrixMultiplication program multiplies two matrices. It uses hardcoded matrices for 

calculation. Its notable feature is nested loop structure. It also does not use external routines. With 

these properties it can be suitable for platform independent tests on nested loop structures. 

 

SelectionSort performs selection sort operation on a hardcoded array. Its two notable features are 

nested loop and decision structures. In addition, it also does not use external routines. It is useful 

for testing behaviors on decision structures which are embedded in nested loop structures. Softmax 

program implements softmax function. It performs calculation on a hardcoded array of integers. 

The results are floating-point numbers. Its notable features are loop structures and floating-point 

operations. It also does not use external routines. It is suitable for simple tests on loops. 

 

3.3. Directory Organization and Contents  

 

ABench2020 is stored in a repository over the Internet. Each program of the benchmark suite has 

its own directory. The name of the directory has the same name with the program. Each program 

directory contains 5 main files. 

 

The first file is source code file of the program. This file has an “adb” file name extension which 

indicates that it is an Ada source code file. The second file is Makefile which manages the 

compilation process of the program. The third file is call graph. This is a directed graph which 

shows routine calls of the program. Call graph of the CorrelationFI program is shown in Figure 1. 

The nodes of the graph represent routines, and edges of the graph represent routine calls. The 

fourth file is scope hierarchy graph. This is a directed graph which shows routine calls and loop 

entries together. Scope hierarchy graph of the CorrelationFI program is shown in Figure 2. The 

nodes of the graph represent routines (e.g. CalculateCoefficient) and loops (e.g. 

CalculateCoefficient*L1). The edges represent routine calls and loop entries.  Call graphs and 

scope hierarchy graphs help to understand the flow of the programs. The fifth file is README 

file which gives information about the related program. In addition to these files, there are also text 

files in the directories of some programs. These files can be either input or output file of the 

program. Explanations about these files are found in the README files of the related programs. 
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Figure 1. Call graph of the CorrelationFI program 

 

 
 

Figure 2. Scope hierarchy graph of the CorrelationFI program 

 

4. Discussion and Future Work 

 

ABench2020 specifically aims to help the evaluation and comparison of WCET analysis tools. 

Although its main focus is WCET analysis, it can also be used in the evaluation of real-time 

platforms and computer systems. Below we explain the similarities and differences between 

ABench2020 and other WCET benchmarks from different perspectives. In addition, we share our 

thoughts about possible future works on ABench2020 and WCET benchmarks. 

 

4.1. External Routine 

 

The programs in TACLeBench does not use external routines. One program in Mälardalen 

benchmarks uses external routines. The programs in MBBench and PBench use external routines. 

ABench2020 includes 6 programs which use external routines and 6 programs which does not use 

external routines. 

 

4.2. Input 

 

The inputs of the programs of TACLeBench and Mälardalen benchmarks are embedded in the 

source code. Linux versions of MBBench benchmarks take inputs either from command line or 

from file. Inputs of the RTEMS versions of MBBench benchmarks are embedded in source code. 

Two programs of PBench takes input from command line. In ABench2020, 3 programs get their 

inputs from command line and 1 program gets its input from file. 

 

4.3. Parallelism 

 

PBench is a parallel WCET benchmark suite. On the other hand, most of the programs of 

ABench2020 are sequential programs. Only one program (Factorial) has both sequential and 
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parallel versions. As multicore architectures become standard, more work on WCET analysis of 

parallel programs will be needed. Therefore, the need for parallel WCET benchmarks will increase. 

 

4.4. Programming Language and Operating System 

 

There are several WCET benchmarks in C programming language. ABench2020 was developed in 

Ada programming language to create an alternative to the research community. We believe that 

more WCET benchmarks in different programming languages are needed. 

 

ABench2020 supports Linux distributions. There are currently many real-time operating systems 

(e.g. Zephyr, Apache Mynewt) are available and benchmarks which support them are needed. 

Therefore, in the future ABench2020 can be ported to different real-time operating systems. 

 

4.5. Real-World Benchmarks 

 

PapaBench and EMSBench mimic real-time industrial applications. AdaBench2020 does not 

include programs in this category. In the future, real-time industrial applications can be added and 

thus WCET benchmark ecosystem can be broadened. 

 

4.6. Benchmark Development Procedure 

 

Benchmark programs support different program structures and properties. By doing this, they 

enable the evaluation of systems from different perspectives. Therefore, feature lists are created 

during benchmark research. To help future research on WCET benchmarks, a standardized and 

comprehensive feature list can be prepared and presented to the WCET community. In addition, 

the steps taken to create benchmark suites from design to implementation can also be formalized 

and documented from a software engineering perspective. A guideline for benchmark studies can 

be provided to research community. This may also help future benchmark studies. 

 

 

Conclusions 

 

In this paper we introduced ABench2020 benchmark suite which has been developed to help the 

evaluation and comparison of WCET analysis tools. The benchmark suite was written in Ada 

programming language to meet the need of benchmark programs in different programming 

languages. It includes several programs which implement different program structures and 

properties to help the evaluation of systems from different aspects. It was published as open source, 

and freely available over the Internet [11]. We believe that ABench2020 will help WCET 

community to further research on WCET analysis. The quality of the WCET research can be greatly 

increased with a wealthy benchmark ecosystem. 
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