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Abstract  
Estimating structural damage after an earthquake remains crucial in preventing loss of lives and 

properties. Conventional methods of damage estimation require a large amount of time and financial 

resources. For this reason, in recent years, machine learning algorithms that produce faster and more 

economical results have become the research topics of interest in damage estimation. Within the scope 

of this study, machine learning models that predict the damage level of the structure after the earthquake 

have been developed. 

In the models created, data sets containing structural and demographic information collected in 11 

regions after the 2015 Gorkha, Nepal earthquake were used. Three classes of repair levels labeled by the 

engineers were chosen as the estimate label. The models were divided into Random Forest and XGBoost 

according to the classification algorithm they used, and models with and without demographic features 

according to the data they used. 

When the general accuracy rates of the models were compared, the models containing demographic 

information were more successful. The most successful result is the random forest model with an 

accuracy rate of 70.83% and the highest damage class recall value of 76.36%. 
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1. Introduction  

An earthquake is an unpredictable natural disaster that affects communities and causes massive 

damage [1]. Determining the regional distribution and levels of damage on building damage that 

may occur during an earthquake in advance plays a very significant role in maintaining the speed 

of action and resource utilization in post-earthquake scenarios [2]. Visually identifying and 

classifying building damage requires significant time and personnel resources and can take months 

after the incident [3]. This article targets to form machine learning models that quickly predict 

earthquake-related damage using various structural and demographic characteristics. 

Machine learning has become a frequently used tool in solving important problems in recent years. 

Compared to traditional approaches, machine learning offers advantages for overcoming complex 

problems, providing computational efficiency, and facilitating decision-making [4]. For this reason, 

machine learning is often used in many areas, as well as in the field of damage detection of 

buildings. Data collected after the 2015 Gorkha earthquake was used for the training of machine 

learning models. 

On April 25, 2015, at 11:56 am local time, an earthquake of magnitude Mw= 7.8 occurred in 

Gorkha, Nepal. The main shock and the Mw= 7.3 aftershock that occurred 17 days later caused 

9,000 deaths, 23,000 injuries, and an estimated $7 billion in economic loss in total [5]. The fact that 

a large part of the residential building typology consists of unreinforced masonry structures 

constructed using mud and stone as mortar has significantly contributed to the losses [6]. The 

Nepalese government conducted a large household survey using mobile technology to assess 

building damage and rebuild housing in 11 earthquake-affected areas [7]. As a result of these 

surveys, tags were added by the engineers stating that the building needs repair or needs to be 

rebuilt. The regions where the surveys were conducted, and the proportions of damaged structures 
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are given in Table 1. 

Table 1. 2015 Gorkha Nepal Earthquake Damage Summary 

Location Population Buildings 
Requiring major repairs or 

reconstruction 

Dhading 430,851  89122 86.07% 

Dolakha 279,577  60639 92.54% 

Gorkha 360,323  78074 84.74% 

Kavrepalanchok 460,464  98019 80.99% 

Makwanpur 464,263  90994 41.32% 

Nuwakot 372,007  77148 93.10% 

Okhaldhunga 190,248  39352 60.09% 

Ramechhap 284,051  58623 84.65% 

Rasuwa 57,209  12644 95.13% 

Sindhuli 352,965  68750 59.70% 

Sindhupalchok 425,175  88741 96.34% 

About 78% of the building stock in the investigated region needs major repairs or reconstruction. 

This was a sign that the earthquake had caused a great deal of destruction. Within the scope of this 

study, none/minor repair, major repair, and reconstruction labels were used as estimation classes. 

It is known that the structures that will be severely damaged constitute a loss of life more important 

than economic losses. For this reason, when investigating the performance of the model that will 

make damage detection, it is important to determine how accurately the class of severe damage is 

determined, as well as its general accuracy. To see the effect of demographic characteristics on the 

models, the data were divided into two. Models were created with Random Forest and XGBoost 

algorithms to predict damage classes. 

2. Materials and Methods 

The models created in this article are constructed by following the flow chart shown in Error! 

Reference source not found.. First, the data sets are combined based on the building id and region 

id. Secondly, the labels of the data are freed from outliers for use in machine learning algorithms. 

To determine the class prediction successes more accurately, the data were balanced by 

subsampling. Then, the selected machine learning algorithms were validated with cross-validation, 

parameter selections that would give the best results were made, and the test data and models were 

tested. Feature selection was made to reduce model flexibility and training time. Finally, the models 

created were compared with the accuracy rates, Precision, and Recall values of the Reconstruction 

class.  

 
Figure 1. Flowchart 
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2.1. Datasets 

Following the 2015 Gorkha Nepal earthquake, Nepal's Household Registration for Housing 

Reconstruction Program (HRRP) conducted a large household survey to assess building damage 

in earthquake-affected areas. Although the initial purpose of this survey was to identify eligible 

owners who would benefit from government assistance for the reconstruction of housing, other 

useful socio-economic information was also collected at the census level [8]. The data includes 

detailed information on 800,000 households belonging to the 11 affected regions [9]. The 

information collected includes the following features: Information on the physical condition of 

buildings before and after the earthquake, household composition (age, gender), household income, 

education level, resources used (tap water, cooking method, toilet facilities, and other facilities) 

Table 2.  

In addition to data from surveys, U.S. Using ShakeMap maps provided by the Geological Survey 

(USGS), PGA and PGV information of the main and major aftershocks of 110 regions were used. 

ShakeMap provides near-real-time maps of ground motion and shaking intensity following 

significant earthquakes [10]. 

The data to be used for machine learning and their explanations are given in Table 2. Technical 

solution suggestions labeled by engineers as a result of surveys conducted in Nepal were used as 

the class to be estimated in the models Figure 2.a. 

Table 2. Survey Data After the 2015 Gorkha Nepal Earthquake. 

  Datasets Name Description Raw Shape 

B
u

il
d

in
g

s Structural Data 
Physical and material properties of structures 

before and after the earthquake. 
(760.000x30) 

Damage Assessment Data Structural damage levels after the earthquake. (760.000x78) 

Building Ownership and 

Use 

Features related to the purpose of use of the 

building. 
(760.000x16) 

 

H
o

u
se

h
o

ld
s 

Demographics 
Features such as household size, household 

income level, and age of the household head. 
(750.000x10)  

Households Resources Features about the assets owned by the household. (750.000x35)  

E
a

rt
h

q
u

a
k

e 

P
a

ra
m

et
er

s 

PGA & PGV 

Peak ground acceleration and peak ground 

velocity values of earthquakes over Mw= 6 that 

Dec between 2015 and 2016. (USGS ShakeMap) 

(110x12)  
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a) Raw Distribution b) Balanced Distribution 

Figure 2. Technical Solution Proposal Label 

2.2. Data Preprocessing 

To improve model success and create meaningful models in the study, various operations were 

performed on the data before the model was trained. First of all, the discrete data were combined 

according to their common features such as structure id and region id. Then, the rows with empty 

observations in the data were cleaned as they constitute a small part of the data. The prediction 

label used in this study consists of four-class categorical variables. In these variables, the tags 

“none” were used when no repair was required in the structure after the earthquake, Minor repair 

when “minor repairs” were required in non-structural elements, “Major repair” when repairs were 

required in non-structural and partial structural elements, and “Reconstruction” tags were used 

when the structure was no longer in use. As seen in Figure 2, the numerical distribution of the 

labels is unbalanced. Since the classification algorithms to be used will perform better in balanced 

data, first of all, data balancing is implied. Random down sampling, one of the best simple methods, 

can be used when there are enough samples [11]. In this study, these two classes were combined 

because the number of None and Minor Repair labels is small, and they are classes with similar 

characters. Then the other classes are down-sampled according to the minority class Major Repair 

[Figure 2.b].  

Two data sets were created to be used in the models over the balanced data set. The first dataset 

created includes the pre-earthquake physical condition of the building, earthquake parameters, and 

various geotechnical properties. In the second dataset, household data was added in addition to the 

first data [Figure 3. Splitting Data]. The purpose of creating two different data is to see the effect of 

demographic characteristics on the success of damage level estimation. 

 

Figure 3. Splitting Data 

Most of the features in the data consist of categorical variables. Machine learning models require 

all input and output variables to be numeric. If there are categorical variables in the data, it must 

be numerically coded before evaluating the model [12]. Each class in the categorical variable is 

represented as a binary variable. In addition, the dummy variable trap was avoided by extracting a 

class from each categorical variable. Relationships of some of the features used with their damage 

levels are given in Figure 4-Figure 14. 
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Figure 4. Damage Distribution of Regions 
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Figure 5. Plinth Area Distribution Figure 6. Age Building Distribution Figure 7. Height Building Distribution 

   
Figure 8. Foundation Type Distribution Figure 9. Gender Household Head Distribution Figure 10. Mud-Mortar Stone Distribution 

   
Figure 11. Ownership Status Distribution Figure 12. Income Level Distribution Figure 13. PGA and Classes Relation 
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Figure 14. Education Level Household Head Distribution 

2.3. Machine Learning Algorithms 

In this study, Random Forest Classification and XGBoost algorithms were used as machine 

learning algorithms. These algorithms were chosen because the data tags used are multi-class and 

there are too many assets. In addition, these algorithms are algorithms that have often proven their 

success in the literature [13]. Both algorithms use gradient boosting. Gradient Boosting tries to 

create a strong predictor by combining weak models while minimizing the loss function using 

gradient descent in the model. 

2.3.1. Random Forest  

Random forest is an ensemble algorithm and it is formed by the combination of multiple decision 

trees. The working logic is based on generating subsets by choosing random samples from the 

training set. It creates decision trees from these clusters. It votes by making predictions for the 

samples selected from these decision trees and increases the scores of the trees whose predictions 

are correct. Random forest algorithms include parameter values such as number of estimators, min 

samples split, max depth, and min samples leaf [14].  

2.3.2. XGBoost 

It is an ensemble method like Random Forest, but it uses the gradient boosting algorithm it uses 

more efficiently. Unlike the Random Forest algorithm, it is more resistant to overlearning. If the 

trees used to give the correct prediction with similar examples, the model can overlearn. To prevent 

this, he prunes trees with a similarity score. By subtracting the similarity ratio of a node and the 

similarity ratio of the structure (child) under the node, the gain of that node is obtained. If this 

difference is low, the tree stops deepening. With XGBoost, trees are created in parallel, not 

sequentially, so the wider community can train its trees faster [15]. 

2.4. Models Validation and Testing 

To improve the performance of the models and ensure their reliability of the model, the 

hyperparameters of the models were first selected with five-fold cross-validation. Then the models 

were tested with the selected parameters. For this, 80% of the data set (300,203 samples) created 

was used in the training and validation of the model. The remaining 20% (75051 samples) of data 

was used only to test the models. The parameters selected for the models are given in Error! 

Reference source not found..The fact that there are too many features in the created models, 

especially in the data containing both structural and demographic characteristics, negatively affects 
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the flexibility of the use of the model. Since the purpose of the models is to predict the effects of 

future earthquakes, reducing the number of features will facilitate the acquisition of new data. For 

this reason, new models were created by removing the features with low effect in the models. 

The Random Forest model found numerical characteristics to be more important. The XGBoost 

model has attached considerable importance to categorical data and the Mud-Mortar Stone feature 

among them [Figure 15Figure 16]. The results of the models were compared using the best 40 

features of both models. 

Table 3. Model Parameters 

Models Tried Parameters  Best Score Parameters 

Random  

Forest 

Number of Estimators : [10, 100, 500, 1000],  

Max Depth :  [None, 2, 5, 8, 10],  

Min Samples Split: [2, 5, 10]  

 
Number of Estimators: 100, 

Max Depth:  None, 

Min Samples Split: 2  

XGBoost 

Number of Estimators : [500, 1000,2000],  

Max Depth :  [None, 2, 5, 6, 8, 10], 

Min Samples Split: [2, 5, 10] ,                       

Learning Rate : [0.1 0.01, 0.02, 0.05],    

Subsample : [0.6, 0.8, 1.0] 

 Number of Estimators:2000,  

Max Depth: 6, 

Min Samples Split: 2,                       

Learning Rate: 0.1, 

Subsample: 0.8 

 

  

Figure 15. Top 10 Features of Random Forest Figure 16. Top 10 Features of XGBoost 

2.5. Model Evaluation Metrics 

In machine learning, if the prediction task is to identify a categorical class, this task is called the 

classification task. The task in this study is a multi-class classification task, as the prediction label 

contains more than two classes. Many metrics have been put forward to test the capabilities of 

multiclass classification models. In this study, we will discuss the performance of the models using 

the Accuracy Rate and Precision & Recall values. 

The accuracy rate is one of the most used metrics in classification problems. Accuracy is a general 

measure of how accurately the model predicts on the test set [16]. It is calculated as the ratio of the 

number of correctly guessed samples in all classes to the number of tests used. It is a more useful 

metric for problems that are balanced and all tags have the same severity rating. In this study, the 

accuracy rate alone is not a measure of performance, as the importance levels of the tags are not 

equal. 
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The Reconstruction class on forecast tags is a more important class than the None/Minor Repair 

and Major Repair classes. Because the buildings belonging to this class belong to the buildings that 

have been heavily damaged in the earthquake and are hazardous . Identifying buildings belonging 

to this class before an earthquake occurs will be the most important step in preventing loss of life 

and property. It is desirable to predict these classes as high as possible in the models. For this 

reason, Precision and the more important Recall values were calculated to compare this class 

performance. Briefly, if we call the Reconstruction class, which is the class we are interested in, 

positive and the other classes are negative, True Positive value is the number of correct predictions 

of the Reconstruction class, False Positive is the number of predictions that are actually in the 

negative class but predicted as a positive class, False Negative is classes that are actually positive 

classes but are predicted as negative classes. The metrics are calculated as in Eq. 1-Eq. 2. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) Eq. 1 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) Eq. 2 

3. Results and Discussion  

The trained machine learning models were tested with approximately 75,000 sample buildings. 

The test results are shown in Table 4. All Model Results. Model performances were tried to be 

determined by the accuracy rate showing the average prediction success and the recall values 

showing the prediction success of the Reconstruction class. 

Table 4. All Model Results 

  Algorithms 
 Random Forest XGBoost 

  Accuracy 
Reconstruction 

Precision 

Reconstruction 

Recall 
Accuracy 

Reconstruction 

Precision 

Reconstruction 

Recall 

I. Dataset  

(43 Features) 
66.93% 74.26% 72.61% 69.19% 75.75% 73.97% 

II. Dataset  

(79 Features) 
70.83% 77.25% 76.36% 70.72% 77.40% 75.92% 

I. Dataset  

(Top 30 

Features) 

66.90% 73.30% 72.34% 68.65% 75.36% 73.05% 

II. Dataset  

(Top 40 

Features) 

70.68% 77.48% 76.22% 70.26% 77.28% 75.32% 

When compared in terms of the data set used, the prediction success of the models that do not use 

demographic features lagged behind other models. In other words, demographic information 

contributed to model success. The highest accuracy rate is the model in which the Random Forest 

algorithm and all the features are used. The accuracy rate of this model is 70.83% and the 

Reconstruction class Recall value is 76.36%. The model that followed this model as a success was 

the XGBoost model, which used the same data set and gave 70.72% accuracy and 75.92% Recall 

value. 

The models created by feature selection provided close prediction successes with the best models, 

although fewer features were used. The Random Forest model, which uses the top 40 features, 

outperformed XGBoost by a small margin with an accuracy rate of 70.68% and a Recall value of 

76.22%. 
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Another important parameter when comparing the performances of the models is that a building 

belonging to the Reconstruction class is mistakenly included in the None/Minor Repair class. The 

loss that occurs here can be thought of as the loss that would occur if a sick person was mistakenly 

appointed as healthy. Even if the model's Recall value is high, this wrong estimation may result in 

a greater financial loss against the other model. Confusion matrices of the models created by feature 

selection are given in Figure 17Figure 18. As can be seen in these models, even though the number 

of correct predictions for the Reconstruction class in the Random Forest model is higher than 

XGBoost, the None/Minor repair prediction as an incorrect prediction remained somewhat high in 

XGBoost. For this reason, which algorithm will be successful may vary depending on the financial 

losses caused by incorrect predictions. 

  
Figure 17. II. Data Top 40 Features RF Model Figure 18. II.Data Top 40 Feature XGBoost Model 

Conclusion 

As a result, in this study, machine learning models were created that predict the results of a previous 

earthquake using various structural, geotechnical, and demographic information. In the models 

created, the effects of demographic information on forecasting success were examined. It has been 

observed that models with demographic characteristics produce more successful predictions. 

Considering that Nepal is one of the least developed countries, including demographic features in 

the models may have a more decisive influence in models on the country's economic classes may 

be observed clearly. The model tests were repeated with the best 40 features selected by the models, 

and the results were close to the models in which all the features were used. Even though the two 

algorithms used have advantages over each other, the Random Forest model gave the highest 

Reconstruction class prediction accuracy with 76.1%. The fact that the model is fast and can make 

damage estimation based on fewer features has proven that it can be used as an alternative to 

traditional methods. Whether the success rates of the models are sufficient in real applications can 

be determined by detailed loss analysis. The performance of machine learning is highly dependent 

on the datasets used, so collecting larger damage datasets will allow future damage prediction 

models to make predictions with less loss. 
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