The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] A. N. Ay and M. Z. Yildiz, “The effect of attentional focusing strategies on emg-based classification,” Biomed. Tech., vol. 66, no. 2, pp. 153–158, 2021, doi: 10.1515/bmt-2020-0082.
[2] H. Wannous, Y. Lucas, and S. Treuillet, “Efficient SVM classifier based on color and texture region features for wound tissue images,” Med. Imaging 2008 Comput. Diagnosis, vol. 6915, p. 69152T, 2008, doi: 10.1117/12.770339.
[3] M. A. Oskoei and H. Hu, “‘Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb,’ in IEEE Transactions on Biomedical Engineering, vol. 55, no. 8, pp. 1956-1965, Aug. , doi: 10.1109/TBME.2008.919734.,” 2008.
[4] * Neta Rabin a , Maayan Kahlon b , c , Sarit Malayev b , d , Anat Ratnovsky b, “Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques,” 2020.
[5] Ahmad, S.A., Chappell, P.H., “Surface EMG Classification Using Moving Approximate Entropy. International Conference on Intelligent and Advanced Systems, pp.1163-1167,” 2007.
[6] R. A. Arief, Z., Sulistijono, I. A., ve Ardiansyah, “‘Comparison of Five Time Series EMG Features myo armband’, International Electronics Symposium, 11–14 (2015).,” 2015.
[7] S. A. Güvenç, “‘Dönen Kol Yüzey Emg Sinyallerinin örüntü Tanima Tabanli Analizi ve Yapay Sinir Ağlari ile Siniflandirilmasi,’” 2014.
[8] B. De la Cruz-S´anchez, M. Arias-Montiel, and E. Lugo-Gonz´alez, “sEMG database of the MYO bracelet for hand gestures. Mendeley Data, 2019.,” 2019, [Online]. Available: https://data.mendeley.com/datasets/rwbs7645hg/1.
[9] Thalmic Lab., “https://developerblog.myo.com/ myoarm resim Thalmics Myo Armband Web Page",” 2020.
[10] A. Jaramillo-Yánez, M. E. Benalcázar, and E. Mena-Maldonado, “Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review,” Sensors (Switzerland), vol. 20, no. 9, pp. 1–36, 2020, doi: 10.3390/s20092467.
[11] Küçükyıldız, G., Ocak, H., Şayli, ö., ve Karakaya, S., “‘Engelliler için EMG Tabanlı Kinect Destekli Bir Tekerlekli Sandalyenin Gerçek Zamanlı Kontrolü (Real Time Control of a WheelChair based on EMG and Kinect for the Disabled People)’, Tıp Teknolojileri Ulusal Kongresi (TIPTEKNO) 2015, 424–427 (2015).,” 2015.
[12] C. M. Bishop, “Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.”
[13] D. Bağcı and O. H. Koçal, “Protez-Biyonik El Kontrolü İçin EMG İşaretlerinin Makine öğrenmesi Metodlarıyla Sınıflandırılması,” 2016.
[14] H. T. çerçi, çağrı, “‘Emg İşaretlerinin özniteliklerinin çikarilmasi, Knn Ve Ysa Yöntemleri Ile Siniflandirilmasi,’” 2017.