The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Feng GH, Tsai MY. Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sensors and Actuators A 2010; 162:100-6.
[2] De Groot PJ, Wijnen PAM, Janssen RBF. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composite Science and Technology 1995; 55:405-412.
[3] Tamayo J. Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Applied Physics Letters 1999; 75:3569.
[4] Santos S. Phase contrast and operation regimes in multi-frequency atomic force microscopy. Applied Physics Letters 2014; 104:143109.
[5] Gomez CJ, Garcia R. Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. Ultramicroscopy 2010; 110:626-633.
[6] Huang Z, Wen P, Zhou X. Comparison of Different Excitation Schemes in Bimodal Atomic Force Microscopy in Air and Liquid Environments. Acta Mechanica Solida Sinica 2021; 34:163-173.
[7] Dou Z, Qian J, Li Y, Wang Z, Zhang Y, Lin R, Wang T. Molecular dynamic simulation of bimodal atomic force microscopy. Ultramicroscopy 2020; 212: 112971.
[8] Forchheimer D, Borysov SS, Platz D, Haviland DB. Determining surface properties with bimodal and multimodal AFM. Nanotechnology 2014; 25:485708.
[9] Korayem MH, Korayem AH, Hashemi SH. Analysis of hysteresis effect on the vibration motion of a bimodal non-uniform micro-cantilever using MCS theory. Applied Physics A 2016; 112:96.
[10] Yilmaz C, Sahin R, Topal ES. Exploring the static acoustic force sensitivity using AFM micro-cantilever under single- and bimodal-frequency excitation. Measurement Science and Technology 2021; 32: 115001.
[11] Takata K, Sasaki T, Tanaka M, Saito H, Matsuura D, Hane K. Fabrication of Ultrasonic Sensors Using Micro Cantilevers and Characteristic Measurement in Vacuum for Acoustic Emission Sensing. Electronics and Communications in Japan 2016; 99:68-74.
[12] Zhao C, Knisely KE, Grosh K. Design and fabrication of a piezoelectric MEMS xylophone transducer with a flexible electrical connection. Sensors and Actuators A 2018; 275: 29-36.
[13] Hur S, Kwak JH, Jung Y, Lee YH. Biomimetic acoustic sensor based on piezoelectric cantilever array. IEICE Electronics Express 2012; 9: 945-950.
[14] Lozano JR, Garcia R. Theory of Multifrequency Atomic Force Microscopy. Physical Review Letters 2008; 100: 076102.
[15] Lozano JR, Garcia R. Theory of phase spectroscopy in bimodal atomic force microscopy. Physical Review B 2009; 79: 014110.
[16] Ehsanipour M, Damircheli M, Eslami B. Effect of cantilevers’ dimensions on phase contrast in multifrequency atomic force microscopy. Microscopy Research and Technique 2019; 82:1438-1447.
[17] Skrzypacz P, Nurakhmetov D, Wei D. Generalized stiffness and effective mass coefficients for power-law Euler-Bernoulli beams. Acta Mechanica Sinica 2019; 36: 160-175.
[18] Demirkiran A, Karakuzu A, Erkol H, Torun H, Unlu MB. Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves. Optics Express 2018; 26: 4906-4919.
[19]Svoren J, Nascak L, Koleda P, Barcik S, Nemec M. The circular saw blade body modification by elastic material layer effecting circular saws sound pressure level when idling and cutting. Applied Acoustics 2021; 179:108028.