The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Jain SK, Singh SN. Harmonics estimation in emerging power system: key issues and challenges. Electr. Power Syst. Res. 2011;81:1754–66.
[2] Stotsky AA. Automotive engines: control, estimation, statistical detection. Berlin, Heidelberg: Springer-Verlag; 2009.
[3] Stotsky A. Towards accurate estimation of fast varying frequency in future electricity networks: the transition from model-free methods to model-based approach. Proc IMechE, Part I: J Syst Control Eng 2016;230:1164–75.
[4] Liu S, Xu L, Ding F. Iterative parameter estimation algorithms for dual-frequency signal models. Algorithms 2017;10:1–13.
[5] Xu L, Ding F. Iterative parameter estimation for signal models based on measured data. Circuits Syst Signal Process 2018;37:3046–69.
[6] Li X, Ding F. Signal modeling using the gradient search. Appl Math Lett 2013;26:807–13.
[7] Bettayeb M, Qidwai U. Recursive estimation of power system harmonics. Electr Power Syst Res 2008;47:143–52.
[8] Cao Y, Liu Z. Signal frequency and parameter estimation for power systems using the hierarchical identification principle. Math Comput Model 2010;51:854–61.
[9] Alhaj HMM, Nor NM, Asirvadam VS, Abdullah MF, Ibrahim T. Estimation of power system harmonic using modified normalized least mean square. Appl Mech Mater 2015;785:378–82.
[10] Zhou L, Li X, Xu H, Zhu P. Multi-innovation stochastic gradient method for harmonic modelling of power signals. IET Signal Process 2016;10:737–42.
[11] Xu L, Ding F. Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst Signal Process 2017;36:1735–53.
[12] Xu L, Xiong W, Alsaedi A, Hayat T. Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int J Control Autom Syst 2018;16:1756–64.
[13] Xu L, Song G. A recursive parameter estimation algorithm for modeling signals with multi-frequencies. Circuits Syst Signal Process 2020;39:4198–224.
[14] Chaudhary NI, Zubair S, Raja MAZ. A new computing approach for power signal modeling using fractional adaptive algorithms. ISA Trans 2017;68:189–202.
[15] Zubair S, Chaudhary NI, Khan ZA, Wang W. Momentum fractional LMS for power signal parameter estimation. Signal Process 2018;142:441–9.
[16] Chaudhary NI, Latif R, Raja MAZ, Machado JAT. An innovative fractional order LMS algorithm for power signal parameter estimation. Appl Math Model 2020;83:703–18.
[17] Stotsky AA. Recursive trigonometric interpolation algorithms. Proc IMechE, Part I: J Syst Control Eng 2010;224:65–77.
[18] Stotsky A. Harmonic regressor: robust solution to least-squares problem. Proc IMechE, Part I: J Syst Control Eng 2013;227:662–8.
[19] Stotsky A. Combined high-order algorithms in robust least-squares estimation with harmonic regressor and strictly diagonally dominant information matrix. Proc IMechE, Part I: J Syst Control Eng 2014;229:184–90.
[20] Hatun M, Koçal OH. Tekrarlamalı Gauss-Seidel yardımcı değişkenler algoritması ile transfer fonksiyonu parametrelerinin yansız tahmini. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2007;12(1):51-9.
[21] Hatun M, Koçal OH. Recursive Gauss–Seidel algorithm for direct self-tuning control. Int J Adapt Control Signal Process 2012;26:435–50.