References
[1] I. De Martino, R. D’Apolito, A.S. McLawhorn, K.A. Fehring, P.K. Sculco, G. Gasparini,Social media for patients: benefits and drawbacks, Curr. Rev. Musculoskelet. Med. 10 (2017)141–145.
[2] P. Eckler, G. Worsowicz, J.W. Rayburn, Social media and health care: an overview, Pm R. 2(2010) 1046–1050.
[3] V.M. Prieto, S. Matos, M. Álvarez, F. Cacheda, J.L. Oliveira, Twitter: a good place to detecthealth conditions, PloS One 9 (2014) e86191, , https://doi.org/10.1371/ journal.pone.0086191.
[4] L. Sinnenberg, A.M. Buttenheim, K. Padrez, C. Mancheno, L. Ungar, R.M. Merchant, Twitteras a tool for health research: a systematic review, Am. J. Public Health 107 (2017) e1–e8
[5] B.L. Neiger, R. Thackeray, S.H. Burton, C.R. Thackeray, J.H. Reese, Use of twitter amonglocal health departments: an analysis of information sharing, engagement, and action, J. Med.Internet Res. 15 (2013) e177, , https://doi.org/10.2196/jmir. 2775.
[6] C. Chew, G. Eysenbach, Pandemics in the age of twitter: content analysis of tweets during the2009 H1N1 outbreak, PloS One 5 (2010) e14118, , https://doi.org/10.1371/journal.pone.0014118.
[7] A. Beykikhoshk, O. Arandjelovic, D. Phung, S. Venkatesh, T. Caelli, Data-Mining Twitterand the Autism Spectrum Disorder: A Pilot Study, (2014), pp. 1–8.
[8] A. Beykikhoshk, O. Arandjelovic, D. Phung, S. Venkatesh, Overcoming Data Scarcity ofTwitter: Using Tweets as Bootstrap with Application to Autism-Related Topic Content Analysis,ACM, New York, New York, USA, 2015, https://doi.org/10. 1145/2808797.2808908.
[9] S. Fahn, Description of Parkinson's disease as a clinical syndrome, Ann N Y Acad Sci, 991(2003) 1-14.
[10] M.C. de Rijk, C. Tzourio, M.M. Breteler, J.F. Dartigues, L. Amaducci, S. Lopez-Pousa, J.M.Manubens-Bertran, A. Alperovitch, W.A. Rocca, Prevalence of parkinsonism and Parkinson'sdisease in Europe: the EUROPARKINSON Collaborative Study. European CommunityConcerted Action on the Epidemiology of Parkinson's disease, J Neurol Neurosurg Psychiatry, 62(1997) 10-15.
[11] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and Documents,” vol.32, 2014.
[12] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of wordrepresentations in vector space. arXiv preprint arXiv:1301.3781.
[13] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for WordRepresentation,” in Proceedings of the 2014 Conference on Empirical Methods in NaturalLanguage Processing (EMNLP), 2014.
[14] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient TextClassification,” 2016.
[15] Kilimci, Z. H., & Akyokus, S. (2018). Deep Learning-and Word Embedding-BasedHeterogeneous Classifier Ensembles for Text Classification. Complexity, 2018.
[16] Ene, Marius. "Neural network-based approach to discriminate healthy people from thosewith Parkinson’s disease." Annals of the University of Craiova-Mathematics and Computer Science Series 35 (2008): 112-116.
[17] Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J., & Ramig, L. O. (2009).Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEEtransactions on bio-medical engineering, 56(4), 1015.
[18] Sakar, C. Okan, and Olcay Kursun. "Telediagnosis of Parkinson’s disease usingmeasurements of dysphonia." Journal of medical systems 34.4 (2010): 591-599.
[19] Das, Resul. "A comparison of multiple classification methods for diagnosis ofParkinson disease." Expert Systems with Applications 37.2 (2010): 1568-1572.
[20] Caglar, Mehmet Fatih, Bayram Cetisli, and Inayet Burcu Toprak. "AutomaticRecognition of Parkinson?s Disease from Sustained Phonation Tests Using ANN andAdaptive Neuro-Fuzzy Classifier." Journal of Engineering Science and Design 1.2 (2010):59-64.
[21] Polat, Kemal. "Classification of Parkinson's disease using feature weightingmethod on the basis of fuzzy C-means clustering." International Journal of SystemsScience 43.4 (2012): 597-609.
[22] Luukka, Pasi. "Feature selection using fuzzy entropy measures with similarityclassifier." Expert Systems with Applications 38.4 (2011): 4600-4607.
[23] Kihel, Badra Khellat, and Mohamed Benyettou. "Parkinson's Disease RecognitionUsing Artificial Immune System." JSEA 4.7 (2011): 391-395.
[24] Eskidere, Ö. (2012). A Comparison Of Feature Selection Methods For Diagnosis OfParkinson’s Disease From Vocal Measurements. Sigma, 30, 402-414.
[25] Prashanth, R., & Roy, S. D. (2018). Novel and improved stage estimation in Parkinson'sdisease using clinical scales and machine learning. Neurocomputing, 305, 78-103.
[26] Bruns, A., Kornstadt, A., & Wichmann, D. (2009). Web application tests with selenium.IEEE software, 26(5), 88-91.
[27] Loria, S. (2018). textblob Documentation (pp. 1-73). Technical report.
[28] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural Networksfor Sequence Learning,” May 2015.
[29] J. L. Elman, “Finding structure in time,” Cogn. Sci., 1990.
[30] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neuralnetworks,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2013.
[31] Prashanth, R., & Roy, S. D. (2018). Early detection of Parkinson’s disease through patientquestionnaire and predictive modelling. International journal of medical informatics, 119, 75-87.
[32] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol.61, pp. 85–117, 2015.
[33] G. H. Yann LeCun, Yoshua Bengio, “Deep learning (2015), Y. LeCun, Y. Bengio and G.Hinton,” Nature, 2015.
[34] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning forComputer Vision: A Brief Review,” Comput. Intell. Neurosci., 2018.
[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in ImageNet Classification with Deep Convolutional NeuralNetworks, 2012.
[36] Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey.Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.
[37] Schneider KM. On Word Frequency Information and Negative Evidence in Naive BayesText Classification. In: 4th International Conference on Advances in Natural LanguageProcessing; 2004; Alacant, Spain: pp. 474–485.
[38] Kilimci, Z. H., Selim Akyokus, and Sevinc Ilhan Omurca. "The effectiveness ofhomogenous ensemble classifiers for Turkish and English texts." In INnovations in IntelligentSysTems and Applications (INISTA), 2016 International Symposium on, pp. 1-7. IEEE, 2016.
[39] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “English pretrained Word2vec model,”https://code.google.com/archive/ p/word2vec/.