Muhammed Ali Pala;Murat Erhan Çimen;Ömer Faruk Boyraz;Mustafa Zahid Yildiz;Ali Fuat Boz
References
[1] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Globalcancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394-424.
[2] Chang, R. F., Wu, W. J., Moon, W. K., & Chen, D. R. (2005). Automatic ultrasoundsegmentation and morphology based diagnosis of solid breast tumors. Breast cancer researchand treatment, 89(2), 179.
[3] Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015).Machine learning applications in cancer prognosis and prediction. Computational andstructural biotechnology journal, 13, 8-17.
[4] Kuhl, C. K., Schrading, S., Leutner, C. C., Morakkabati-Spitz, N., Wardelmann, E.,Fimmers, R., ... & Schild, H. H. (2005). Mammography, breast ultrasound, and magneticresonance imaging for surveillance of women at high familial risk for breast cancer. Journalof clinical oncology, 23(33), 8469-8476.
[5] Wawre, S. V., & Deshmukh, S. N. (2016). Sentiment classification using machine learningtechniques. International Journal of Science and Research (IJSR), 5(4), 819-821.
[6] Geppert, H., Vogt, M., & Bajorath, J. (2010). Current trends in ligand-based virtualscreening: molecular representations, data mining methods, new application areas, andperformance evaluation. Journal of chemical information and modeling, 50(2), 205-216.
[7] Al-Maolegi, M., & Arkok, B. (2014). An improved Apriori algorithm for association rules.arXiv preprint arXiv:1403.3948.
[8] Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern separationfor medical diagnosis applied to breast cytology. Proceedings of the national academy ofsciences, 87(23), 9193-9196. Veri Seti URL: https://archive.ics.uci.edu/ml/machinelearning-databases/breast-cancer-wisconsin/ ,Erişim Tarihi: 22.10.2019
[9] Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions onSystems, Man, and Cybernetics, (4), 325-327.
[10] Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automaticalgorithm configuration. VISAPP (1), 2(331-340), 2.
[11] Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
[12] Liu, H., & Zhang, S. (2012). Noisy data elimination using mutual k-nearest neighbor forclassification mining. Journal of Systems and Software, 85(5), 1067-1074.
[13] Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence Review,39(4), 261-283.
[14] Danacı, M., Çelik, M., & Akkaya, A. E. (2010). Veri madenciliği yöntemleri kullanılarakmeme kanseri hücrelerinin tahmin ve teşhisi. Akıllı Sistemlerde Yenilikler ve UygulamaSempozyumu, 21-24.
[15] Bhargava, N., Sharma, G., Bhargava, R., & Mathuria, M. (2013). Decision tree analysis onj48 algorithm for data mining. Proceedings of International Journal of Advanced Researchin Computer Science and Software Engineering, 3(6).
[16] Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid systembased on decision tree classifier and fast Fourier transform. Applied Mathematics andComputation, 187(2), 1017-1026.
[17] Rokach, L., & Maimon, O. Z. (2008). Data mining with decision trees: theory andapplications (Vol. 69). World scientific.
[18] Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection.Statistics surveys, 4, 40-79.
[19] Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep beliefnetworks. Expert Systems with Applications, 46, 139-144.