References
[1] Manasrah, A. D., Almanassra, I. W., Marei, N. N., Al-Mubaiyedh, U. A., Laoui, T., & Atieh, M.A. (2018). Surface modification of carbon nanotubes with copper oxide nanoparticles for heattransfer enhancement of nanofluids. RSC Advances, 8(4), 1791–1802.https://doi.org/10.1039/c7ra10406e.
[2] Mai, Y. J., Wang, X. L., Xiang, J. Y., Qiao, Y. Q., Zhang, D., Gu, C. D., & Tu, J. P. (2011).CuO/graphene composite as anode materials for lithium-ion batteries. Electrochimica Acta, 56(5),2306–2311. https://doi.org/10.1016/j.electacta.2010.11.036
[3] Zhao, B., Shao, G., Fan, B., Zhao, W., & Zhang, R. (2015). Facile synthesis and enhancedmicrowave absorption properties of novel hierarchical heterostructures based on a Ni microsphereCuO nano-rice core-shell composite. Physical Chemistry Chemical Physics, 17(8), 6044–6052.https://doi.org/10.1039/c4cp05229c
[4] Wan, Y., Cui, T., Xiao, J., Xiong, G., Guo, R., & Luo, H. (2016). Engineering carbon fibers withdual coatings of FeCo and CuO towards enhanced microwave absorption properties. Journal ofAlloys and Compounds, 687, 334–341.https://doi.org/10.1016/J.JALLCOM.2016.06.147
[5] Aruoja, Villem, et al. "Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgaePseudokirchneriella subcapitata." Science of the total environment 407.4 (2009): 1461-1468.
[6] Wang, H., Xu, J. Z., Zhu, J. J., & Chen, H. Y. (2002). Preparation of CuO nanoparticles bymicrowave irradiation. Journal of crystal growth, 244(1), 88-94.
[7] Wan, Y., Cui, T., Xiao, J., Xiong, G., Guo, R., & Luo, H. (2016). Engineering carbon fiberswith dual coatings of FeCo and CuO towards enhanced microwave absorption properties. Journalof Alloys and Compounds, 687, 334-341.
[8] Zeng, Jun, and Jincheng Xu. "Microwave absorption properties of CuO/Co/carbon fibercomposites synthesized by thermal oxidation." Journal of Alloys and Compounds 493.1-2 (2010):L39-L41. Liu et al.
[9] Johnson, C. A., Piatak, N. M., & Miller, M. M. (2017). Barite (Barium) (No. 1802-D). USGeological Survey.
[10] Thongpool, V., Phunpueok, A., Barnthip, N., & Jaiyen, S. (2015). BaSO4/Polyvinyl AlcoholComposites for Radiation Shielding. In Applied Mechanics and Materials (Vol. 804, pp. 3-6).Trans Tech Publications.
[11] Zhou, H., Wang, M., Ding, H., & Du, G. (2015). Preparation and characterization ofbarite/TiO2 composite particles. Advances in Materials Science and Engineering, 2015.
[12] Share Isfahani, H., Abtahi, S.M., Roshanzamir, M.A. et al. Geotech Geol Eng (2019) 37:845. https://doi.org/10.1007/s10706-018-0654-0
[13] Sakr, K., Ramadan, W., Sayed, M., El-Zakla, T., El-Desouqy, M., & El-Faramawy, N.(2018). Utilization of barite/cement composites for gamma rays attenuation. Radiation Effectsand Defects in Solids, 173(3-4), 269-282.
[14] Gao, Q., Wu, X., Fan, Y., & Meng, Q. (2017). Color performance and near infraredreflectance property of novel yellow pigment based on Fe2TiO5 nanorods decorated micacomposites. Dyes and Pigments, 146, 537-542.
[15] Akinay, Yuksel, and Abdullah O. Kizilcay. "Computation and modeling of microwaveabsorbing CuO/graphene nanocomposites." Polymer Composites (2019).
[16] Zhang N, Huang Y and Wang M. 3D ferromagnetic gra- phene nanocomposites with ZnOnanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption.Compos Part B Eng 2018; 136: 135–142.
[17] Idris FM, Hashim M, Abbas Z, et al. Recent develop- ments of smart electromagneticabsorbers based polymer- composites at gigahertz frequencies. J Magn Magn Mater 2016; 405:197–208.
[18] Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: areview and prospect- ive. Compos Part B Eng 2018; 137: 260–277.
[19] Akinay, Y., & Hayat, F. (2019). Synthesis and microwave absorption enhancement of BaTiO3nanoparticle/polyvinylbutyral composites. Journal of Composite Materials, 53(5), 593-601.
[20] Microwave-Heating Mechanism and Theory of Material–Microwave Interaction YUKSELAKINAY CHAPTER 19, Vacca, J. R. (Ed.). (2019). Nanoscale Networking and CommunicationsHandbook. CRC Press.