The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci 1963;20(2):130–41.
[2] Kantz H, Schreiber T. Nonlinear Time Series Analysis. 2nd ed. Cambridge: Cambridge University Press; 2004.
[3] Álvarez G, Li S. Some basic cryptographic requirements for chaos-based cryptosystems.
Int J Bifurcat Chaos 2006;16(8):2129–51.
[4] Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys Rev Lett 1993;71(1):65–8.
[5] Jaeger H. The ‘echo state’ approach to analysing and training recurrent neural networks. 2001. Available from: https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
[6] Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 2009;3(3):127–49.
[7] Oldham KB, Spanier J. The Fractional Calculus. New York: Academic Press; 1974.
[8] Podlubny I. Fractional Differential Equations. Vol. 198. San Diego: Academic Press; 1999.
[9] Diethelm K, Ford NJ, Freed AD. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 2002;29:3–22. doi:10.1023/A:101659221934
[10] Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett 2003;91(3):034101. doi:10.1103/PhysRevLett.91.034101
[11] Kavuran G. Utilization of Fractional Order Differentiation in Nonlinear Control Methods and Signal Processing Techniques [PhD thesis]. Malatya: Inonu University; 2017.
[12] Rodan A, Tiňo P. Minimum complexity echo state network. IEEE Trans Neural Netw
2011;22(1):131–44. doi:10.1109/TNN.2010.2089641
[13] Long J, Zhang S, Li C. Evolving Deep Echo State Networks for Intelligent Fault Diagnosis.
IEEE Trans Ind Inform 2020;16(7):4928–37. doi:10.1109/TII.2019.2938884
[14] Wang Z, Zhao H, Zheng M, Niu S, Gao X, Li L. A novel time series prediction method based on pooling compressed sensing echo state network and its application in stock market. Neural Netw 2023;164:216–27. doi:10.1016/j.neunet.2023.04.031
[15] Karunasinghe DSK, Liong SY. Chaotic time series prediction with a global model: Artificial neural network. J Hydrol (Amst) 2006;323(1–4):92–105. doi:10.1016/j.jhydrol.2005.07.048
[16] Wang Z, Yao X, Huang Z, Liu L. Deep Echo State Network with Multiple Adaptive Reservoirs for Time Series Prediction. IEEE Trans Cogn Dev Syst 2021;13(3):693–704. doi:10.1109/TCDS.2021.3062177
[17] Kashinath K, et al. Physics-informed machine learning: Case studies for weather and climate modelling. Philos Trans R Soc A Math Phys Eng Sci 2021;379(2194). doi:10.1098/RSTA.2020.0093
[18] Wang Q, et al. Chaotic time series prediction based on physics-informed neural operator.
Chaos Solitons Fractals 2024;186. doi:10.1016/j.chaos.2024.115326
[19] Kavuran G. When machine learning meets fractional-order chaotic signals: detecting dynamical variations. Chaos Solitons Fractals 2022;157:111908. doi:10.1016/J.CHAOS.2022.111908
[20] Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Springer; 2011.
[21] Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 2016;89:447–54. doi:10.1016/j.chaos.2016.02.012
[22] Kavuran G. chaotic_AES_gui [software]. MATLAB Central File Exchange; 2025. Available from: https://www.mathworks.com/matlabcentral/fileexchange/180914- chaotic_aes_gui