The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Yolcan, O. O., & Köse, R. (2020). Türkiye’nin güneş enerjisi durumu ve güneş enerjisi santrali kurulumunda önemli parametreler. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 6(2), 196-215.
[2] Nsengiyumva, W., Chen, S. G., Hu, L., & Chen, X. (2018). Recent advancements and challenges in Solar Tracking Systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250-279.
[3] İçel, Y. (2024). Kirliliğin PV Panel Verimine Etkisi ve Panel Temizleme Yöntemleri. Interdisciplinary Studies on Contemporary Research Practices in Engineering in the 21st Century-VI, 201.
[4] Derakhshandeh, J. F., AlLuqman, R., Mohammad, S., AlHussain, H., AlHendi, G., AlEid, D., & Ahmad, Z. (2021). A comprehensive review of automatic cleaning systems of solar panels. Sustainable Energy Technologies and Assessments, 47, 101518.
[5] El-Shobokshy, M. S., & Hussein, F. M. (1993). Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renewable energy, 3(6-7), 585-590.
[6] Ghazi, S., Sayigh, A., & Ip, K. (2014). Dust effect on flat surfaces–A review paper. Renewable and Sustainable Energy Reviews, 33, 742-751.
[7] Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576-604.
[8] Akinyele, D. O., & Rayudu, R. K. (2014). Sustainable energy technologies and assessments. Review of energy storage technologies for sustainable power networks, 8, 2213-1388.
[9] Jaradat, M. A., Tauseef, M., Altaf, Y., Saab, R., Adel, H., Yousuf, N., & Zurigat, Y. H. (2015, December). A fully portable robot system for cleaning solar panels. In 2015 10th International Symposium on Mechatronics and its Applications (ISMA) (pp. 1-6). IEEE.
[10] Huang, J., Zeng, K., Zhang, Z., & Zhong, W. (2023). Solar panel defect detection design based on YOLO v5 algorithm. Heliyon, 9(8).
[11] Olorunfemi, B. O., Ogbolumani, O. A., & Nwulu, N. (2022). Solar panels dirt monitoring and cleaning for performance improvement: a systematic review on smart systems. Sustainability, 14(17), 10920.
[12] Ronnaronglit, N., & Maneerat, N. (2019, July). A cleaning robot for solar panels. In 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST) (pp. 1-4). IEEE.
[13] He, Z., Zhang, Y., & Li, H. (2019, March). Self-inspection cleaning device for photovoltaic power plant based on machine vision. In IOP Conference Series: Earth and Environmental Science (Vol. 242, p. 032020). IOP Publishing.
[14] al-Urdunīyah, J. A. Z. (2016). Universiti Sains Malaysia, and Institute of Electrical and Electronics Engineers. Internet of Things: Architectures, Protocols, and Applications.
[15] Abuqaaud, K. A., & Ferrah, A. (2020, February). A novel technique for detecting and monitoring dust and soil on solar photovoltaic panel. In 2020 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.
[16] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
[17] Vuola, A. O., Akram, S. U., & Kannala, J. (2019, April). Mask-RCNN and U-net ensembled for nuclei segmentation. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019) (pp. 208-212). IEEE.
[18 ]Widyaningrum, R., Candradewi, I., Aji, N. R. A. S., & Aulianisa, R. (2022). Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis. Imaging science in dentistry, 52(4), 383.
[19 ] Chou, A., Li, W., & Roman, E. (2022). GI tract image segmentation with U-Net and mask R-CNN. Image Segmentation with U-Net and Mask R-CNN, 1-9.
[20] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
[21] Wang, C. Y., Yeh, I. H., & Mark Liao, H. Y. (2025). Yolov9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision (pp. 1-21). Springer, Cham.
[22] Sapkota, R., Meng, Z., Ahmed, D., Churuvija, M., Du, X., Ma, Z., & Karkee, M. (2024). Comprehensive performance evaluation of yolov10, yolov9 and yolov8 on detecting and counting fruitlet in complex orchard environments. Authorea Preprints.
[23] Imran, A., Hulikal, M. S., & Gardi, H. A. (2024). Real Time American Sign Language Detection Using Yolo-v9. arXiv preprint arXiv:2407.17950.