The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Yang, X. S. (2010). Engineering optimization: an introduction with metaheuristic applications. John Wiley & Sons.
[2] Borase, R. P., Maghade, D. K., Sondkar, S. Y., & Pawar, S. N. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9, 818-827.
[3] Boz, A. F., & Çimen, M. E. (2017). Geliştirilmiş Ateşböceği Algoritması ile PID Denetleyici Tasarımı. In 8th International Advanced Technologies Symposium, December (Vol. 3358, p. 3365).
[4] Bendjeghaba, O., Boushaki, S. I., & Zemmour, N. (2013, May). Firefly algorithm for optimal tuning of PID controller parameters. In 4th International Conference on Power Engineering, Energy and Electrical Drives (pp. 1293-1296). IEEE.
[5] Chang, W. D., & Yan, J. J. (2004). Optimum setting of PID controllers based on using evolutionary programming algorithm. Journal of the Chinese Institute of Engineers, 27(3), 439-442.
[6] Chen, Y., Ma, Y., & Yun, W. (2014). Application of improved genetic algorithm in PID controller parameters optimization. Telkomnika, 2013, vol. 11, no. 3.
[7] Panda, S., Sahu, B. K., & Mohanty, P. K. (2012). Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. Journal of the Franklin Institute, 349(8), 2609-2625.
[8] Issa, M., Elbaset, A. A., Hassanien, A. E., & Ziedan, I. (2019). PID controller tuning parameters using meta-heuristics algorithms: comparative analysis. Machine learning paradigms: theory and application, 413-430.
[9] George, T., & Ganesan, V. (2022). Optimal tuning of PID controller in time delay system: A review on various optimization techniques. Chemical Product and Process Modeling, 17(1), 1-28
[10] Akbari, M. A., Zare, M., Azizipanah-Abarghooee, R., Mirjalili, S., & Deriche, M. (2022). The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Scientific reports, 12(1), 10953.
[11] Zhao, W., Wang, L., & Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering, 388, 114194.
[12] X.-S. Yang and S. Deb, "Cuckoo Search via L´evy Flights," Nature & Biologically Inspired Computing, pp. 210- 214, 9-11 Dec. 2009.