The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] A. Kylili and P. A. Fokaides, “European smart cities: The role of zero energy buildings,” Sustain. Cities Soc., vol. 15, pp. 86–95, Jul. 2015, doi: 10.1016/J.SCS.2014.12.003.
[2] R. J. Hafner, D. Elmes, and D. Read, “Promoting behavioural change to reduce thermal energy demand in households: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 205–214, Mar. 2019, doi: 10.1016/J.RSER.2018.12.004.
[3] H. Zhao and F. Magoulès, “A review on the prediction of building energy consumption | Elsevier Enhanced Reader.” https://reader.elsevier.com/reader/sd/pii/S1364032112001438?token=ED4964E3C6054F0AD8E72A9F4ACCFA9CB78B624951F020383A5ED6D562ED45628D765A46E13E585B5027745FC2D0BB6FandoriginRegion=eu-west-1andoriginCreation=20210725115410 (accessed Jul. 25, 2021).
[4] D. Vuarnoz and T. Jusselme, “Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid,” Energy, vol. 161, pp. 573–582, Oct. 2018, doi: 10.1016/J.ENERGY.2018.07.087.
[5] A. Batish and A. Agrawal, “Building Energy Prediction for Early Design Stage Decision Support: A Review of Data-driven Techniques,” in Proceedings of Building Simulation 2019: 16th Conference of IBPSA, 2020, vol. 16, pp. 1514–1521, doi: 10.26868/25222708.2019.211032.
[6] W. Gao, J. Alsarraf, H. Moayedi, A. Shahsavar, and H. Nguyen, “Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms,” Appl. Soft Comput. J., vol. 84, p. 105748, Nov. 2019, doi: 10.1016/j.asoc.2019.105748.
[7] R. Kumar, R. K. Aggarwal, and J. D. Sharma, “Energy analysis of a building using artificial neural network: A review,” Energy Build., vol. 65, pp. 352–358, Oct. 2013, doi: 10.1016/J.ENBUILD.2013.06.007.
[8] J. S. Chou and D. K. Bui, “Modeling heating and cooling loads by artificial intelligence for energy-efficient building design,” Energy Build., vol. 82, pp. 437–446, Oct. 2014, doi: 10.1016/j.enbuild.2014.07.036.
[9] M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption,” Energy Build., vol. 147, pp. 77–89, Jul. 2017, doi: 10.1016/J.ENBUILD.2017.04.038.
[10] K. Pervez Amber et al., “Energy Consumption Forecasting for University Sector Buildings,” doi: 10.3390/en10101579.
[11] K. Amasyali and N. M. El-Gohary, “A review of data-driven building energy consumption prediction studies,” Renewable and Sustainable Energy Reviews, vol. 81. Elsevier Ltd, pp. 1192–1205, Jan. 01, 2018, doi: 10.1016/j.rser.2017.04.095.
[12] T. Ahmad, H. Chen, Y. Guo, and J. Wang, “A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review,” Energy Build., vol. 165, pp. 301–320, Apr. 2018, doi: 10.1016/j.enbuild.2018.01.017.
[13] M. Bourdeau, X. qiang Zhai, E. Nefzaoui, X. Guo, and P. Chatellier, “Modeling and forecasting building energy consumption: A review of data-driven techniques,” Sustain. Cities Soc., vol. 48, p. 101533, Jul. 2019, doi: https://doi.org/10.1016/j.scs.2019.101533.
[14] T. Østergård, R. L. Jensen, and S. E. Maagaard, “Building simulations supporting decision making in early design - A review,” Renewable and Sustainable Energy Reviews, vol. 61. Elsevier Ltd, pp. 187–201, Aug. 01, 2016, doi: 10.1016/j.rser.2016.03.045.
[15] S. Seyedzadeh, F. P. Rahimian, I. Glesk, and M. Roper, “Machine learning for estimation of building energy consumption and performance: a review,” Visualization in Engineering, vol. 6, no. 1. 2018, doi: 10.1186/s40327-018-0064-7.
[16] A. Tsanas and A. Xifara, “UCI Machine Learning Repository: Energy efficiency Data Set,” https://archive.ics.uci.edu/, 2012. https://archive.ics.uci.edu/ml/datasets/energy+efficiency (accessed Jun. 12, 2021).
[17] A. Tsanas and A. Xifara, “Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools,” Energy Build., vol. 49, pp. 560–567, Jun. 2012, doi: 10.1016/j.enbuild.2012.03.003.
[18] R. Alpar, Uygulamalı istatistik ve geçerlilik güvenirlilik: Spor, sağlık ve eğitim bilimlerinden örneklerle, 2nd ed. Ankara: Detay Yayıncılık, 2016.
[19] A. Zheng, Evaluating Machine Learning Models, 1st ed. 2015.
[20] B. Ataseven, “Yapay Sinir Ağları İle öngörü Modellemesi,” öneri Derg., vol. 10, no. 39, pp. 101–115, 2013.