References
[1] X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.
[2] M. S. Kıran, "Optimizasyon problemlerinin çözümü için yapay arı kolonisi algoritmasıtabanlı yeni yaklaşımlar," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2014.
[3] S. A. Uymaz, "Yeni bir biyolojik ilhamlı metasezgisel optimizasyon metodu: Yapay algalgoritması," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2015.
[4] F. Glover and M. Laguna, "Tabu search," in Handbook of combinatorial optimization, ed:Springer, 1998, pp. 2093-2229.
[5] Z. N. Azimi, "Comparison of metaheuristic algorithms for examination timetablingproblem," Journal of Applied Mathematics and computing, vol. 16, p. 337, 2004.
[6] S. Kannan, S. M. R. Slochanal, and N. P. Padhy, "Application and comparison ofmetaheuristic techniques to generation expansion planning problem," IEEE transactions onPower Systems, vol. 20, pp. 466-475, 2005.
[7] P. Civicioglu and E. Besdok, "A conceptual comparison of the Cuckoo-search, particleswarm optimization, differential evolution and artificial bee colony algorithms," Artificialintelligence review, vol. 39, pp. 315-346, 2013.
[8] S. Arora and S. Singh, "A conceptual comparison of firefly algorithm, bat algorithm andcuckoo search," in 2013 International Conference on Control, Computing, Communicationand Materials (ICCCCM), 2013, pp. 1-4.
[9] D. Karaboğa, "Yapay Zeka Optimizasyon Algoritmalari," Nobel Akademik Yayıncılık, p.245, 2014.
[10] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technicalreport-tr06, Erciyes university, engineering faculty, computer …2005.
[11] T. Keskintürk, "Diferansiyel gelişim algoritması," İstanbul Ticaret Üniversitesi FenBilimleri Dergisi, vol. 5, pp. 85-99, 2006.
[12] D. Mayer, B. Kinghorn, and A. Archer, "Differential evolution–an easy and efficientevolutionary algorithm for model optimisation," Agricultural Systems, vol. 83, pp. 315-328,2005.
[13] R. Storn, "Differrential evolution-a simple and efficient adaptive scheme for globaloptimization over continuous spaces," Technical report, International Computer ScienceInstitute, vol. 11, 1995.
[14] P. J. Angeline, "Evolution revolution: An introduction to the special track on genetic andevolutionary programming," IEEE Intelligent Systems, pp. 6-10, 1995.
[15] G. G. Emel and Ç. Taşkın, "Genetik Algoritmalar ve Uygulama Alanlari," UludağÜniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 21, pp. 129-152, 2002.
[16] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm,"Information sciences, vol. 179, pp. 2232-2248, 2009.
[17] R. Eberhart and J. Kennedy, "Particle swarm optimization," in Proceedings of the IEEEinternational conference on neural networks, 1995, pp. 1942-1948.
[18] M. Y. ÖZSAĞLAM and M. ÇUNKAŞ, "Optimizasyon problemlerinin çözümü içinparçaçık sürü optimizasyonu algoritması," Politeknik Dergisi, vol. 11, pp. 299-305, 2008.
[19] M. Karakoyun, N. A. Baykan, and M. Hacibeyoglu, "Multi-Level Thresholding for ImageSegmentation With Swarm Optimization Algorithms," International Research Journal ofElectronics & Computer Engineering, vol. 30, 2017.
[20] S. Çınaroğlu and H. Bulut, "K-ortalamalar ve parçacık sürü optimizasyonu tabanlıkümeleme algoritmaları için yeni ilklendirme yaklaşımları," Journal of the Faculty ofEngineering & Architecture of Gazi University, vol. 33, 2018.
[21] M. A. N. Awad, J. Liang, B. Qu, P. Suganthan, "Problem definitions and evaluation criteriafor the CEC 2017 special session and competition on single objective bound constrainedreal-parameter numerical optimization," 2017.