References
[1] Allen, Richard G., et al. "Crop evapotranspiration-Guidelines for computing crop waterrequirements-FAO Irrigation and drainage paper 56." Fao, Rome 300.9 (1998): D05109.
[2] Ooi, Su Ki, et al. "A systems engineering approach to viticulture on-farm irrigation." IFACProceedings Volumes 41.2 (2008): 9569-9574.
[3] Saleem, Syed Khusro, et al. "Model predictive control for real-time irrigation scheduling."IFAC Proceedings Volumes 46.18 (2013): 299-304.
[4] Delgoda, Dilini, et al. "Irrigation control based on model predictive control (MPC):Formulation of theory and validation using weather forecast data and AQUACROP model."Environmental Modelling & Software 78 (2016): 40-53.
[5] Shang, C., Chen, W. H., Stroock, A. D., & You, F. Robust Model Predictive Control ofIrrigation Systems With Active Uncertainty Learning and Data Analytics. IEEETransactions on Control Systems Technology, 2019.
[6] Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., &Torres-Sánchez, R. A decision support system for managing irrigation inagriculture. Computers and Electronics in Agriculture, 2016, 124, 121-131.
[7] Kim, Y., Evans, R. G., &Iversen, W. M. Remote sensing and control of an irrigation systemusing a distributed wireless sensor network. IEEE transactions on instrumentation andmeasurement, 2008, 57(7), 1379-1387.
[8] Dukes, M. D., & Perry, C. Uniformity testing of variable-rate center pivot irrigation controlsystems. Precision Agriculture, 2006, 7(3), 205.
[9] Lopes, S. O., Pereira, R. M., Pereira, P. A., Caldeira, A. C., & Fonte, V. F. (2019). Optimalcontrol applied to an irrigation planning problem: a real case study inportugal. International Journal of Hydrology Science and Technology, 9(2), 173-188.
[10] Jihin, R., Kögler, F., & Söffker, D. Data Driven State Machine Model for Industry 4.0Lifetime Modeling and Identification of Irrigation Control Parameters. In 2019 Global IoTSummit, 2019.
[11] Delgoda, D., Malano, H., Saleem, S. K., & Halgamuge, M. N. Irrigation control based onmodel predictive control (MPC): Formulation of theory and validation using weatherforecast data and AQUACROP model. Environmental Modelling & Software, 2016, 78,40-53.
[12] Lozoya, C., Mendoza, C., Mejía, L., Quintana, J., Mendoza, G., Bustillos, M., & Solís, L.Model predictive control for closed-loop irrigation. IFAC Proceedings Volumes, 2014,47(3), 4429-4434.
[13] Kia, P. Javadi, et al. "Intelligent control based fuzzy logic for automation of greenhouseirrigation system and evaluation in relation to conventional systems." World AppliedSciences Journal 6.1 (2009): 16-23.
[14] Bahat, M., Inbar, G., Yaniv, O., & Schneider, M. A fuzzy irrigation controllersystem. Engineering Applications of Artificial Intelligence, 2000, 13(2), 137-145.
[15] Raju, K. S., & Kumar, D. N., Fuzzy multi criterion decision making in irrigationplanning. Irrigation and Drainage: The journal of the International Commission onIrrigation and Drainage, 2005; 54(4), 455-465.
[16] Mohapatra, A. G., Lenka, S. K., & Keswani, B. Neural network and fuzzy logic basedsmart DSS model for irrigation notification and control in precisionagriculture. Proceedings of the National Academy of Sciences, India Section A: PhysicalSciences, 2019, 89(1), 67-76.
[17] Lee, C. C. Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Transactions onsystems, man, and cybernetics, 1990, 20(2), 419-435.
[18] Qiuming, K., Yandong, Z., & Chenxiang, B. Automatic monitor and control system ofwater saving irrigation. Transactions of the Chinese Society of AgriculturalEngineering, 2007, (6).
[19] Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. Wireless sensor network withirrigation valve control. Computers and electronics in agriculture, 2013, 96, 13-22.
[20] Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. Automatedirrigation system using a wireless sensor network and GPRS module. IEEE transactions oninstrumentation and measurement, 2013, 63(1), 166-176.
[21] Wang, L. X. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions onfuzzy systems, 1993, 1(2), 146-155.
[22] Beyhan, S., Lendek, Z., Babuška, R., Wisse, M., &Alcı, M. Adaptive fuzzy and slidingmode control of a robot manipulator with varying payload. 50th IEEE Conference onDecision and Control and European Control Conference, 2011,(pp. 8291-8296).
[23] Wang, L. X., A course in fuzzy systems and control (Vol. 2). UpperSaddleRiver, NJ:Prentice Hall PTR, 1997.
[24] Åström, K. J., &Hägglund, T. PID controllers: theory, design, and tuning (Vol. 2).Research Triangle Park, NC: Instrument society of America, 1995.
[25] Ang, K. H., Chong, G., & Li, Y. PID controls system analysis, design, andtechnology. IEEE transactions on control systems technology, 2005, 13(4), 559-576.