References
[1] R. Lakes, Foam structures with a negative Poisson’s ratios. Science 235, (1987) 1038–1040.
[2] N. DinhDuc, K. Eock, N. DucTuan, P. Tran, N. DinhKhoa,. New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerospace Science and Technology, 2017, 70, 396–404
[3] M. Assidi, J. Ganghoffer. Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos. Struct, 2012, 94, 2373–2382
[4] H. Wan, H. Ohtaki, S. Kotosaka, et al., A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech., 2014, 23, 95–106.
[5] Y. Prawota, Solid Mechanics for Materials Engineers: Auxetic materials seen from the mechanics point of view, Chapter 15, USA, 2013.
[6] F. Scarpa and G. Tomlinson. Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson’s ratio values. Journal of Sound and Vibration, 2000, vol. 230(1).
[7] X.W. Zhang and D.Q. Yang. A novel marine impact resistance and vibration isolation cellular base. Journal of Vibration and Shock, 2015, 34(10), 40–45.
[8] R. S. Lakes and K. Elms. Indentability of conventional and negative Poisson’s ratio foams. Journal of Composite Materials, 1993, 27(12), 1193–1202.
[9] D. Mousanezhad, H. Ebrahimi, B. Haghpanah, R. Ghosh, A. Ajdari, A.M.S. Hamouda, A. Vaziri. Spiderweb honeycombs. International Journal of Solids and Structures, 2015, 66, 218–227.
[10] C. Yang , H. Vora and Y. Chang. Behavior of auxetic structures under compression and impact forces. Smart Mater. Struct., 2018, 27(2), 1-12.
[11] B. Gorny, T. Niendorf , J. Lackmann, M. Thoene, T. Troester and H. J. Maier. In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting. Mater. Sci. Eng. A, 2011, 528(27), 7962–7967.
[12] V. Weißmann, J. Wieding , H. Hansmann, N. Laufer, A. Wolf and R. Bader. Specific yielding of selective laser-melted Ti6Al4v open-porous scaffolds as a function of unit cell design and dimensions. Metals, 2016, 6(7), 1-19.
[13] S. Li, H. Hassanin, M.M. Attallah, N.J. Adkins, K. Essa. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater., 2016, 105, 75–83.
[14] O. Rehme and C. Emmelmann. Selective laser melting of honeycombs with negative poisson’s ratio. JLMN-Journal of Laser Micro/Nanoengineering, 2009, 4(2), 128-134.
[15] P. Dziewit, P. Platek, J. Janiszewski, M. Sarzynski, M. Grazka, R. Paszkowski. Mechanical response of additive manufactured regular cellular structures in quasi-static loading conditionsPart I experimental investigations. Proceedings of the 7th International Conference on Mechanics and Materials in Design, 2017, 1061-1074.
[16] A. Ingrole, A. Hao, R. Liang. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Materials and Design, 2017, 117, 72–83.
[17] B. Pandaa, M. Leitea, B. B. Biswalb, X. Niuc, A. Gargc. Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures. Measurement,2018, 116, 495–506.
[18] L. Yang, O. Harrysson, H. West, D. Cornier. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. International Journal of Solids and Structures, 2015, 69–70, 475–490.
[19] L. Yang, O. Harrysson, H. West, D. Cornier. Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Materialia, 2012, 60, 3370–3379.
[20] N. Novak, N. Vesenjak, M. Ren, Z. Nejc, M. Vesenjak, Z. Ren. Auxetic Cellular Materials - a Review. Journal of Mechanical Engineering, 2016, 62(9), 485-493.
[21] SLM/DMLS Titanium Ti6Al4V, Crp Meccanica, https://www.crpmeccanica.com/PDF/SLM-DMLS_TitaniumTi6Al4v_CRP.pdf, Last access:15.05.2018
[22] K.E. Evans, K.L. Alderson. Auxetic materials: the positive side of being negative. Eng. Sci. Edu. J., 2000, 9, 148-154.
[23] E.A. Friis, R.S. Lakes, J.B. Park. Negative Poisson’s ratio polymeric and metallic materials. J. Mater. Sci., 1988, 4406-4414.
[24] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel. Poisson’s ratio and modern materials. Nature Materials,2011, 10, 823-837.
[25] J.B. Choi, R.S. Lakes. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fracture., 1996, 80, 73-83.
[26] S. Yang, C. Qi, D. Guo, D. Wang. Energy absorption of an re-entrant honeycombs with negative poisson’s ratio. Applied Mechanics and Materials,2012, 148-149, 992-995.
[27] G. Dong, L. Yang, Y. Gao, D. Liu. An efficient energy absorbing structure inspired by energy harvesting device. International Conference on Modeling, Simulation and Optimization (MSO 2018), 2018, 450-455.