References
[1] Lin, Che-hsien, Tsai C.H., Tseng F. G., Chen I. C., Hsieh C. K. Electrochemical pulse deposition of ni nanoparticles on the 3D graphene network to synthesize vertical CNFs as the full-carbon hybrid nanoarchitecture for supercapacitors. Materials Letters 2017; 192: 40–43.
[2] N. He, Yildiz O., Pan Q., Zhu J., Z. Xiangwu, Bradford P. D., Gao W. Pyrolytic-carbon coating in carbon nano tube foams for better performance in supercapacitors. Journal of Power Sources 2017; 343: 492–501.
[3] Hou J., Cao C., Idrees F., Ma. X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh capacity battery anodes and supercapacitors. ACS Nano 2015; 9: 556–2564.
[4] Candelaria S. L., Shao Y., Zhou W., Li X., XiaoJ., Zhang JiG., Wang Y., Liu J., Li J., Cao G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012; 1: 195–220.
[5] Faraji S., and Ani F. N. The development supercapacitor from activated carbon by electroless plating-a review. Renewable Sustainanble Energy Reviews 2015; 42: 823–834.
[6] Pham D. T., Lee T. H., Luong D. H., Yao F., Ghosh A., Le V. T., Kim T. H., Li B., Chang J., and Hee L. Y. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors 2015; 9: 2018–2027.
[7] Wang W., Guo S., Penchev M., Ruiz I., Bozhilov K. N., Yan D., Ozkan M., Ozkan C. S. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors 2013; 2: 294-303.
[8] Pasquier A. D., Irene P., Serafin M., Glenn A. A comparative study of li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources 2003;115: 171–178.
[9] Karnan M., Subramani K., Srividhya P. K., Sathish M. Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and nonaqueous electrolytes. Electrochimica Acta 2017; 228: 586–596.
[10] Liu Y., and Peng X. Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today 2017; 7: 1–12.
[11] Bui P. T. M., Song J. H., Li Z.Y., Akhtar M. S., Yang O.B. Low temperature solution processed Mn3O4 nanoparticles: enhanced performance of electrochemical supercapacitors. Journal of Alloys and Compounds 2017; 694: 560–567.
[12] Chu A., Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles initial characterization. Journal of Power Sources2002; 112: 236–246.
[13] Quan B., Meng Y., Li L., Yao Z., Liu Z., Wang K., Wei Z., Gu C., Li J. Vertical few-layer graphene/metalized si-nanocone arrays as 3D electrodes for solid-state supercapacitors with large areal capacitance and superior rate capability. Applied Surface Science2017; 404: 238–245.
[14] Luo L., Liu T., Zhang S., Ke B., Yu L., Hussain S. Hierarchical CO3O4 @ ZnWO4 core/shell nanostructures on nickel foam: synthesis and electrochemical performance for supercapacitors. Ceramics International 2017; 43: 5095–5101.
[15] Zhou D., Wang H., Mao N., Chen Y., Zhou Y., Yin T., Xie H., Liu W., Chen S., Wang X. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous and Mesoporous Materials 2017, 241: 202–209.
[16] Yang X., Cheng C., Wang Y., Qiu L., Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013; 341: 534–537.
[17] Tehrani Z., Thomas D., Korochkina T., Phillips C., Lupo D., Lehtimäki S., Gethin D. Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 2017; 118: 1313-1321.
[18] Li L., Huang Z., Li H., Peng J. A rapid cell voltage balancing scheme for supercapacitor based energy storage systems for urban rail vehicles. Electric Power Systems Research 2017; 142: 329–340.
[19] Song Z., Hou J., Hofmann H., Li J., Ouyang M. Sliding-mode and lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles. Energy 2017; 122: 601–612.
[20] Ali Z., Tahir M., Cao C.,Mahmood A., Mahmood N., Butt F. K., TanveerM., Shakir I., Rizwan M., Idrees F., et al .. . Solid waste for energy storage material as electrode of supercapacitors. Materials Letters 2016; 181: 191–195.
[21] Lu L., Wanfei L., Lisha Z., Yijie Z., Zhao Z., Ying C., Jinghai L., Liwei L., Wei C., Yuegang Z. Impact of size on energy storage performance of graphene based supercapacitor electrode. Electrochimica Acta 2016; 219: 463–69.
[22] Cabrane Z., Ouassaid M., Maaroufi M. Analysis and evaluation of battery-supercapacitor hybrid energy storage system for photovoltaic installation. International Journal of Hydrogen Energy 2016; 41 : 20897–20907.
[23] Sharma R., and Suhag S. Novel control strategy for hybrid renewable energy-based standalone system. Turkish Journal of Electrical Engineering & Computer Sciences 2017; 25: 2261–2277.
[24] Krismadinataa , Rahim N. Abd., Ping H. W., Selvaraj J. Photovoltaic module modeling using simulink/matlab. Procedia Environmental Sciences 2013, 17:537–546.
[25] Bellia H., Youcef R., Fatima M. A detailed modeling of photovoltaic module using MATLAB. NRIAG Journal of Astronomy and Geophysics 2014; 3: 53–61.
[26] Eteiba M. B., El Shenawy E. T., Shazly J. H., Hafez A. Z. A photovoltaic (cell, module, array) simulation and monitoring model using matlab®/gui interface. International Journal of Computer Applications 2013; 69:14–28.
[27] Feckl F. Efficient Super-Capacitor Charging with TPS62740. Texas USA: Texas Instruments, 2014.
[28] Patel K. R., Desai R. R. Calculation of internal parameters of super capacitor to replace battery by using charging and discharging characteristics. International Journal of Engineering and Innovative Technology 2012; 2:142–146.
[29] Sumathi S. , Kumar A. L., Surekha P. Application of matlab/simulink in solar PV systems. In: Solar PV and Wind Energy Conversion Systems. Green Energy and Technology. USA: Springer Press, 2015.
[30] Belarbi M., Boudghene-Stambouli A., Belarbi E., and Haddouche K. A new algorithm of parameter estimation of a photovoltaic solar panel. Turkish Journal of Electrical Engineering & Computer Sciences 2016; 24: 276–284.