References
[1] Reyes-Gil K. R., Stephens Z. D., Stavila V., Robinson D. B. Composite WO3/TiO2Nanostructures for High Electrochromic Activity. ACS Appl. Mater. Interfaces 2015, 7,2202−2213.
[2] Yu W., Chen J., Fu Y. Electrochromic property of a copolymer based on 5-cyanoindole and3,4-ethylenedioxythiophene and its application in electrochromic devices. Journal ofElectroanalytical Chemistry 2013, 700, 17–23.
[3] Zhang J., Tu J., Du G., Dong Z. Ultra-thin WO3 nanorod embedded polyaniline compositethin film: Synthesis and electrochromic characteristics. Solar Energy Materials & Solar Cells2013, 114, 31–37.
[4] Kim T., Jeon H. J., Lee J., Nah. Y. Enhanced electrochromic properties of hybrid P3HT/WO3composites with multiple colorations. Electrochem. Commun. 2015, 57, 65–69.
[5] Granqvist C.G., Tungsten oxide films: Preparation, structure, and composition of sputterdeposited films, in: C.G. Granqvist (Ed.), Handbook of Inorganic Electrochromic Materials,Elsevier Science B.V., Amsterdam 1995, Chapter 4, pp 55–63.
[6] Baek Y., Yong K. Controlled growth and characterization of tungsten oxide nanowiresusing thermal evaporation of WO3 powder. J. Phys. Chem. C 2007, 111, 1213–1218.
[7] Wang J.M., Khoo E., Lee P.S., Ma J. Controlled Synthesis of WO3 Nanorods and TheirElectrochromic Properties in H2SO4 Electrolyte. J. Phys. Chem. C 2009, 113, 9655–9658.
[8] Zhang J., Wang X.L., Xia X.H., Gu C.D. Electrochromic behavior of WO3 nanotree filmsprepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells 2011, 95, 2107–2112.
[9] Baeck S.H., Choi K.S., Jaramillo T.F., Stucky G.D., McFarland E.W. Enhancement ofphotocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3thin films. Adv. Mater. 2003, 15, 1269–1273.
[10] Dulgerbaki C., Maslakci Nohut N., Komur A. I., Oksuz Uygun A. Electrochromic devicebased on electrospun WO3 nanofibers. Materials Research Bulletin 2015, 72, 70–76.
[11] Leftheriotis G., Yianoulis P. Development of electrodeposited WO3 films with modifiedsurface morphology and improved electrochromic properties. Solid State Ionics 2008, 179, 2192–2197.
[12] Kondalkar V.V., Kharade R.R., Mali S.S., Mane R.M. Nanobrick-like WO3 thin films:Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures 2014,73, 290–295.
[13] Liao C.C., Chen F.R., Kai J.J. WO3_x nanowires based electrochromic devices. SolarEnergy Materials & Solar Cells 2006, 90, 1147–1155.
[14] Wang K., Zeng P., Zhai J., Liu Q. Electrochromic films with a stacked structure of WO3nanosheets. Electrochemistry Communications 2013, 26, 5–9.
[15] Shim H.S., Kim J.W., Sung Y.E., Kim W.B. Electrochromic properties of tungsten oxidenanowires fabricated by electrospinning method. Solar Energy Materials & Solar Cells 2009 93,2062–2068
[16] Chen Z., Lv H., Zhu X., Li D. Electropolymerization of Aniline onto Anodic WO3 Film: AnApproach to Extend Polyaniline Electroactivity Beyond pH 7. J. Phys. Chem. C 2014, 118,27449−27458.
[17] Ling H., Liu L., Lee P.S., Lu X. Layer-by-Layer Assembly of PEDOT:PSS and WO3Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies byScanning Electrochemical Microscopy. Electrochimica Acta 2015, 174, 57–65.
[18] Wei H., Yan X., Wu S., Luo Z. Electropolymerized Polyaniline Stabilized Tungsten OxideNanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. J. Phys.Chem. C 2012, 116, 25052−25064.
[19] Cai G.F., Tu J.P., Zhou D. Dual electrochromic film based on WO3/polyaniline core/shellnanowire array. Solar Energy Materials&Solar Cells 2014, 122, 51–58.
[20] Feng Z., Mo D., Wang Z. Low-potential electrosynthesis of a novel nitrogen analog ofPEDOT in an ionic liquid and its optoelectronic properties. Electrochimica Acta 2015, 160, 160–168.
[21] Ahmad S., Deepa M., Singh S. Electrochemical Synthesis and Surface Characterization ofPoly(3,4-ethylenedioxythiophene) Films Grown in an Ionic Liquid. Langmuir 2007, 23, 11430-11433.
[22] Ma L.J., Li Y.X., Yu X.F. Using room temperature ionic liquid to fabricate PEDOT/TiO2nanocomposite electrode-based electrochromic devices with enhanced long-term stability, SolarEnergy Materials & Solar Cells 2008, 92, 1253-1259.
[23] Dulgerbaki C., Oksuz Uygun A. Efficient Electrochromic Materials Based on PEDOT/WO3Composites Synthesized in Ionic Liquid Media. Electroanal. 2014, 26, 2501–2512.
[24] Dulgerbaki C., Oksuz Uygun A. Fabricating polypyrrole/tungsten oxide hybrid basedelectrochromic devices using different ionic liquids. Polym. Adv. Technol. 2015, DOI:10.1002/pat.3601
[25] Tong L. Nanofibers - production, properties and functional applications 2011, InTech,Rijeka, Croatia.
[26] Liang L., Zhang J., Zhou Y., Xie J., Zhang X., Guan M., Pan B., Xie Y. High-performanceflexible electrochromic device based on facile semiconductor-to-metal transition realized byWO3.2H2O ultrathin nanosheets. Sci. Rep. 2013, 3, 1936; DOI:10.1038/srep01936
[27] Xu C., Zhao J., Yu J. Ethylenedioxythiophene derivatized polynapthalenes as activematerials for electrochromic devices. Electrochimica Acta 2013, 96, 82–89.
[28] Janaky C., Tacconi N. R. Electrodeposited Polyaniline in a Nanoporous WO3 Matrix: AnOrganic/Inorganic Hybrid Exhibiting Both p- and n-Type Photoelectrochemical Activity. J. Phys.Chem. C 2012, 116, 4234−4242.
[29] Wen R.T., Niklasson G.A., Granqvist C.G. Strongly Improved Electrochemical CyclingDurability by Adding Iridium to Electrochromic Nickel Oxide Films. ACS Appl. Mater.Interfaces 2015, 7, 9319−9322.
[30] Alcaraz-Espinoza J.J., Chávez-Guajardo A.E, Melo C.P. Hierarchical CompositePolyaniline−(Electrospun Polystyrene) Fibers Applied to Heavy Metal Remediation. ACS Appl.Mater. Interfaces 2015, 7, 7231−7240.
[31] Liao Y., Zhang C., Zhang Y., Strong V. Carbon Nanotube/Polyaniline CompositeNanofibers: Facile Synthesis and Chemosensors. Nano Lett. 2011, 11, 954–959.
[32] Erro E. M., Baruzzi A. M., Iglesias R. A., Fast electrochromic response of ultraporouspolyaniline nanofibers. Polymer 2014, 55, 2440-2444.