The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Suppasri A, Muhari A, Syamsidik, Yunus R, Pakoksung K, Imamura F, Koshimura S, Paulik R. Vulnerability characteristics of tsunamis in indonesia: analysis of the global centre for disaster statistics database. Journal of Disaster Research 2018;13:1039-1048.
[2] Pilarczyk JE, Dura T, Horton BP, Engelhart SE, Kemp AC, Sawai Y. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography Palaeoclimatology Palaeoecology 2014; 413:144-157.
[3] Laksono FAT, Tsai LLY, Pilarczyk J. The sedimentological record of Upper Holocene tsunami event in Fengbin, Taiwan. Geopersia 2021; 11:169–203.
[4] Fujii Y, Satake K. Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophysical Research Letters 2006; 33: 1-5.
[5] Gunawan E, Meilano I, Abidin H Z, Hanifa NR, Susilo. Investigation of the best coseismic fault model of the 2006 Java tsunami earthquake based on mechanisms of postseismic deformation. Journal of Asian Earth Sciences 2016; 117:64-72.
[6] Samaras AG, Karambas TV, Archetti R. Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Science 2015; 11:643-655.
[7] Tappin DR. Submarine landslides and their tsunami hazard. Annual Review of Earth and Planetary Sciences 2021; 49:551-578.
[8] Rosalia S, Widiyantoro S, Nugraha AD, Supendi P. Double-difference tomography of p-and s-wave velocity structure beneath the western part of Java, Indonesia. Earthquake Science 2019; 32:12-25.
[9] Sassa S, Takagawa T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. landslides 2019; 16: 195-200.
[10] Shinozaki T, Sawai Y, Hara J, Ikehara M, Matsumoto D, Tanigawa K. Geochemical characteristics of deposits from the 2011 Tohoku-oki tsunami at Hasunuma, Kujukuri coastal plain, Japan. Island Arc 2016; 25: 350–368.
[11] Macías J, Castro MJ, Ortega S, González-Vida JM. Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Modelling 2020; 152:101645.
[12] Strusińska-Correia A. Tsunami mitigation in Japan after the 2011 Tōhoku Tsunami. International Journal of Disaster Risk Reduction 2017; 22: 397-411.
[13] Salmanidou DM, Ehara A, Himaz R, Heidarzadeh M, Guillas S. Impact of future tsunamis from the Java trench on household welfare: Merging geophysics and economics through catastrophe modelling. International Journal of Disaster Risk Reduction 2021; 61:102291.
[14] Dewi RS. A-GIS based approach of an evacuation model for tsunami risk reduction. Journal of Integrated Disaster Risk Management 2012; 2:108-39.
[15] Asri AK, Elya H, Duantari N, Suryaningsih E, Victoria LDDD. Dual mitigation system: database system combination of EWS and APRS for disaster management (case study: Malang southern coast). Procedia - Social and Behavioral Sciences 2016; 227:435-441.
[16] Kato T, Ito T, Abidin HZ, Agustan. Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 south off Java island earthquake and tsunami, Indonesia. Earth, Planets and Space 2007; 59: 1055-1059.
[17] Hall S, Pettersson J, Meservy W, Harris R, Agustinawati D, Olson J, McFarlane A. Awareness of tsunami natural warning signs and intended evacuation behaviors in Java, Indonesia. Natural Hazards 2017; 89:473-496.
[18] Koulali A, McClusky S, Susilo S, Leonard Y, Cummins P, Tregoning P, Meilano I, Efendi J, Wijanarto AB. The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters 2017; 458:69-79.
[19] Mardiatno D, Malawani MN, Nisaa' RM. The future tsunami risk potential as a consequence of building development in Pangandaran Region, West Java, Indonesia. International Journal of Disaster Risk Reduction 2020; 46:101523.
[20] Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., and Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Sci Rep 2020; 10:15274.
[21] Abdurrachman M, Widiyantoro S, Priadi B, Alim MZA, Dewangga AH. Proposed new wadati-benioff zone model in Java-Sumatra subduction zone and its tectonic implication. Joint Convention Balikpapan 2015; 1: 1-4.
[22] Izquierdo T, Fritis E, Abad M. Analysis and validation of the PTVA tsunami building vulnerability model using the 2015 Chile post-tsunami damage data in Coquimbo and la Serena cities. Nat Hazards Earth Syst Sci 2018; 18:1703-1716.
[23] Dall’Osso F, Dominey-Howes D, Tarbotton C, Summerhayes S, Withycombe G. Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA–4 model. Natural Hazards 2016; 83:1229-1256.
[24] Papathoma-Köhle M, Cristofari G, Wenk M, Fuchs S. The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction 2019; 36:101103.
[25] Batzakis DV, Misthos LM, Voulgaris G, Tsanakas K, Andreou M, Tsodoulos I, Karymbalis E. Assessment of building vulnerability to tsunami hazard in kamari (Santorini island, greece). J Mar Sci Eng 2020; 8:886.
[26] Harisuthan S, Hasalanka H, Kularatne D, Siriwardana, C. Applicability of the PTVA–4 model to evaluate the structural vulnerability of hospitals in Sri Lanka against tsunami. International Journal of Disaster Resilience in the Built Environment 2020; 11:581-596.
[27] Madani S, Khaleghi S, Jannat MRA. Assessing building vulnerability to tsunami using the PTVA-3 model: a case study of Chabahar Bay, Iran. Natural Hazards 2017; 85:349-359.
[28] Aditama MR, Sunan HL, Laksono FAT, Ramadhan G, Iswahyudi S, Fadlin. Integrated Subsurface Analysis of Thickness and Density for Liquefaction Hazard: Case Study of South Cilacap Region, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology 2021; 6:58-66.
[29] Laksono FAT, Widagdo A, Aditama MR, Fauzan MR, Kovács J. Tsunami hazard zone and multiple scenarios of tsunami evacuation route at Jetis Beach, Cilacap Regency, Indonesia. Sustain 2022; 14:2726.
[30] Tarbotton C, Dominey-Howes D, Goff JR, Papathoma-Kohle M, Dall’osso F, Turner IL. GIS-based techniques for assessing the vulnerability of buildings to tsunami: Current approaches and future steps. Geological Society Special Publication 2012; 361:115.