References
[1] Ok B. Geosentetiklerle Güçlendirilmiş İnşaat ve Yıkıntı Atığı Dolguların Statik ve Tekrarlı Yükler Altındaki Davranışının İncelenmesi. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü; 2018.
[2] Maçin KE, Demir İ. Kentsel dönüşüm sürecinde İstanbul’da inşaat ve yıkıntı atıkları yönetimi; 2018.
[3] Arulrajah A, Piratheepan J, Aatheesan T, Bo MW. Geotechnical Properties of Recycled Crushed Brick in Pavement Applications. J. Mater. Civ. Eng 2011; 23(10): 1444–1452.
[4] O'Mahony MM, Milligan GWE. Use of recycled materials in subbase layers. Transportation Research Record 1991; 1310.
[5] Bennert T, Papp W, Maher A, Gucunski N. Utilization of Construction and Demolition Debris under Traffic-Type Loading in Base and Subbase Applications. Transportation Research Record: Journal of the Transportation Research Board 2000; 1714: 33–39.
[6] Nataatmadja A, Tan YL. Resilient response of recycled concrete road aggregates. Journal of Transportation Engineering 2001; 127(5): 450-453.
[7] Molenaar AA, van Niekerk AA. Effects of gradation, composition, and degree of compaction on the mechanical characteristics of recycled unbound materials. Transportation Research Record 2002; 1787: 73-82.
[8] Sivakumar V, McKinley JD, Ferguson D. Reuse of Construction Waste: Performance under Repeated Loading. Proc. Inst. Civ. Eng. Geotech. Eng. 2004; 157:91–96.
[9] Poon CS, Chan D. Feasible Use of Recycled Concrete Aggregates and Crushedclay Brick As Unbound Road Sub-Base. Constr. Build. Mater. 2006; 20:578–585.
[10] Santos ECG, Vilar OM. Use of Recycled Construction and Demolition Wastes (RCDW) As Backfill of Reinforced Soil Structures. In: Proceedings of the Fourth European Geosynthetics Conference, EUROGEO 4, September 7–10, Edinburg, Scotland; 2008.
[11] Leite FC, Motta RS, Vasconcelos KL, Bernucci L. Laboratory Evaluation of Recycled Construction and Demolition Waste for Pavements. Constr. Build.Mater. 2011; 25:2972–2979.
[12] Gabr AR, Cameron DA. Properties of Recycled Concrete Aggregate for Unbound Pavement Construction. Journal of Materials in Civil Engineering (ASCE) 2012; 24(6):754-764.
[13] Barbudo A, Agrela F, Ayuso J, Jiménez JR, Poon CS. Statistical Analysis of Recycled Aggregates Derived from Different Sources for Sub-Base Applications. Constr. Build. Mater. 2012; 28:129–138.
[14] Cerni G, Cardone F, Bocci M. Permanent Deformation Behaviour of Unbound Recycled Mixtures. Construction and Building Materials 2012; 37:573-580.
[15] Arulrajah A, Piratheepan J, Disfani MM, Bo MW. Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering 2013; 25(8):1077-1088.
[16] Arulrajah A, Rahman MA, Piratheepan J, Bo MW, Imteaz MA. Interface Shear Strength Testing of Geogrid-Reinforced Construction Anddemolition Materials. Adv. Civil Eng. Mater. 2013; 2(1):189–200.
[17] Arulrajah A, Piratheepan J, Disfani MM. Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering 2014; 26(2):349-357.
[18] Rahman MA, Arulrajah A, Piratheepan J, Bo MW, Imteaz MA. Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials. J Mater Civ Eng. 2014; 26(3):512-519.
[19] Arulrajah A, Rahman MA, Piratheepan J, Bo MW, Imteaz MA. Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using A Modified Large Scale Direct Sheartesting Apparatus. J. Mater. Civil Eng. 2014; 26:974–982.
[20] Disfani MM, Arulrajah A, Haghighi H, Mohammadinia A, Horpibulsuk S. Flexural Beam Fatigue Strength Evaluation Of Crushed Brick As a Supplementary Material in Cement Stabilized Recycled Concrete Aggregates. Constr. Build.Mater. 2014; 68:667–676.
[21] Ayan V, Lımbachiya MC, Omer JR, Azadani SMN. Compaction Assessment of Recycled Aggregates for Use in Unbound Subbase Application. Journal of Civil Engineering and Management 2014; 20(2):169- 174.
[22] Vieira CS, Pereira PM. Damage Induced by Recycled Construction and Demolition Wastes on the Short-Term Tensile Behaviour of Two Geosynthetics. Transportation Geotechnics 2015; 4:64-75.
[23] Saribas I, Ok B. Seismic performance of recycled aggregate–filled cantilever reinforced concrete retaining walls. Advances in Mechanical Engineering 2019; 11(4), 1687814019838112.
[24] Sarıcı T. Puzolan ile güçlendirilmiş inşaat ve yıkıntı atıklarının granüler dolgu olarak kullanılabilirliğinin değerlendirilmesi. Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü; 2019.
[25] Ok B, Sarici T, Talaslioglu T, Yildiz A. Geotechnical properties of recycled construction and demolition materials for filling applications. Transportation Geotechnics 2020; 24, 100380.
[26] Ok B, Demir A. Yapım Yıkım Atıklarının Yol Temellerinde Kullanılabilirliğinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2018; 7(1): 224-236.
[27] TS EN 12350-1. Beton-Taze Betondeneyleri Bölüm 1: Numune Alma. Türk Standartları Enstitüsü, Ankara; 2002.
[28] Vieira CS, Pereira PM. Use of Recycled Construction and Demolition Materials in Geotechnical Applications: A review. Resources. Conservation and Recycling 2015; 103:192–204.
[29] Jiménez JR, Ayuso J, Agrela F, López M, Galvín AP. Utilisation of Unbound Recycled Aggregates from Selected CDW in Unpaved Rural Roads. Resources, Conservation and Recycling 2012; 58:88–97.
[30] Neves J, Freire AC, Roque AJ, Martins I, Antunes ML, Faria G. Utilization of Recycled Materials in Unbound Granular Layers Validated by Experimental Test Sections. In: Ninth International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway; 2013.
[31] Mehrjardi GT, Azizi A, Haji-Azizi A, Asdollafardi G. Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics 2020; 23, 100349.
[32] TS 2824 EN 1338. Zemin Döşemesi için Beton Kaplama Blokları - Gerekli Şartlar ve Deney Metotları. TSE, Ankara, 2005.
[33] ASTM D 422-63. Standard Test Method for Particle-Size Analysis of Soils. West Conshohocken, USA: ASTM International; 2009.
[34] ASTM D 1241-00. Specification for Materials for Soil-aggregate Sub-base, Base and Surface Courses. West Conshohocken, USA: ASTM International; 2005.
[35] ASTM D 2487-11. Standard practice for classification of soils for engineering purposes
(unified soil classification system). West Conshohocken, USA: ASTM International; 2011.
[36] ASTM C 127-01 Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. West Conshohocken, USA: ASTM International; 2001.
[37] ASTM C 128-01. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. West Conshohocken, USA: ASTM International; 2001.
[38] ASTM D 854-02. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, USA: ASTM International; 2009.
[39] ASTM D 1557. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. West Conshohocken, USA: ASTM International; 2012.
[40] ASTM D 4254-00. Standard test method for minimum index density and unit weight of soils and calculation of relative density. West Conshohocken, USA: ASTM International; 2002.
[41] Karayolları Teknik Şartnamesi. Ulaştırma Denizcilik ve Haberleşme Bakanlığı Karayolları Genel Müdürlüğü, Ankara, Türkiye; 2013.